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Recently realized higher order topological insulators have taken a surge of interest among the theoretical
and experimental condensed matter community. The two-dimensional second order topological insulators
give rise to zero-dimensional localized corner modes that reside within the band gap of the system along
with edge modes that inhabit a band edge next to bulk modes. Thanks to the topological nature, information
can be trapped at the corners of these systems, which will be unhampered even in the presence of disorder.
Being localized at the corners, the exchange of information among the corner states is an issue. Here we
show that the nonlinearity in an exciton polariton system can allow the coupling between the different
corners through the edge states based on optical parametric scattering, realizing a system of multiple
connectible topological modes.
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Introduction.—Topological insulators (TIs) have
attracted attention in the past decade due to their unique
exotic property, namely the appearance of backscattering-
immune edge states, which can propagate against pertur-
bation without being backscattered. TIs have been explored
in various systems including electronics [1,2], photonics
[3–10], cold atoms [11,12], exciton-polaritons [13–18],
acoustics [19,20], etc. Recently the concept of topological
phases was extended to higher order topological phases
[21–33] that go beyond the conventional bulk-boundary
correspondence [1]. A two-dimensional second order
topological insulator can host topologically protected
zero-dimensional gapless corner states along with one-
dimensional gapped edge states. The zero-dimensional
corner states have been realized using quantization of
quadrupole moments in square lattices [21,22], classical
mechanical systems [26], electromagnetic metamaterials
[27,28], breathing kagome lattices [34–36], and acoustic
metamaterials [32,37]. Due to the topological properties of
these corner states, information can be trapped at the
corners of the system, which will be unhampered even
in the presence of disorder, making it a potential candidate
for information processing [30,38–46]. But corner states,
as with other topological modes, are well isolated from
each other even in the presence of disorder making it
difficult for them to overlap (they are orthogonal eigen-
states). Consequently, it is far from obvious whether there
are ways in which different corner states can interact.
Although information processing necessitates operating
with a coupling of multiple modes, the coupling of multiple
topological modes is unexplored in the literature (especially
for corner states).
In this Letter, we consider theoretically an array of

coupled exciton-polariton micropillars arranged in a square

lattice. Exciton-polaritons are hybrid light matter quasi-
particles that arise from the strong coupling of quantum
well excitons and microcavity photons. They are well
known for a variety of nonlinear effects, typically studied
in planar microcavities [47,48]. Several experiments were
accomplished with arrays of coupled micropillars, where
the hopping between two micropillars is realized by having
overlap between them [49–54]. These systems have
allowed the implementation [16] of schemes [13–15] for
first order topological band structures. Theoretical works
have studied nonlinear effects in such systems, including
inversion of topology [55], formation of solitons [56–58],
antichiral behavior [59], and bistability [17].
Here we consider a second order topological polariton

band structure, which is based on achieving hopping
between sites with opposite sign. This can not be achieved
just by varying the overlap between neighboring micro-
pillars, but can be implemented by placing auxiliary
micropillars between a main lattice of micropillars. This
follows a generic scheme introduced in Ref. [60] for tight-
binding lattices, which we verified starting from a particular
polariton potential profile. Having established polariton
corner states, we study the influence of polariton-polariton
scattering, which allows them to couple to edge states. It is
via edge states that polariton corner states can interact,
where the excitation of one corner state causes excitation
of its neighbor, which would not be possible in the linear
regime. We have demonstrated a transfer of information
encoded in a binary state from one corner to the next, which
can occur even in the presence of a realistic level of
disorder. We find that the mechanism of information
transfer proceeds both faster and with lower required power
than the same mechanism considered in a regular non-
topological square lattice.
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Scheme.—We consider a square lattice of coupled
exciton-polariton micropillars as shown in Fig. 1(a). For
simplicity, we neglect the spin degree of freedom in the
system and consider a single mode of each micropillar,
which evolves according to the driven-dissipative nonlinear
Schrödinger equation

iℏ
∂ψ i

∂t ¼
�
Δ −

iΓ
2
þ iP

�
ψ i þ

X
hji

Jijψ j

þ αjψ ij2ψ i − iαNLjψ ij2ψ i þ Fi; ð1Þ

whereΔ is the energy detuning between the polariton mode
energy (on site energy) and the laser energy, and Γ is the
polariton dissipation. P is a nonresonant pump applied
uniformly to all micropillars in the system and as a result
the nonlinear loss term αNL is inevitable. α is the strength of
nonlinear interaction and F is a coherent driving field
(i.e., laser). Next we move to the dimensionless units by
making the following transformations: t → tℏ=J and ψ i →
ψ i

ffiffiffiffiffiffiffiffiffiffiffiffiðJ=αÞp
, where J is the weakest hopping amplitude.

With these choices Eq. (1) becomes
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∂ψ i
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where the polariton-polariton nonlinear interaction is scaled
to unity. All the energy terms in the equation are normal-
ized by a factor J, αNL is normalized by α, and Fi →
Fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα=J3Þ

p
. We consider four different hopping terms

(J;−J; J0, and -J0) realizing the potential described in
Fig. 1(a). In writing Eq. (2), we have assumed a tight-
binding approximation. Exciton-polaritons can also be
modeled directly from a continuous model, discussed in
the Supplemental Material [61]. There, we also explain how
hopping terms of opposite sign can be achieved, by making
use of auxiliary micropillars in the lattice. Although we
operatewith dimensionless units,we also provide typical real
units, corresponding to setting the coupling J ¼ 1 meV
(corresponding to Ref. [64]).
Neglecting at first the excitation, decay, and nonlinear

terms, the energy spectrum (E) as a function of eigenstate
quantum number (n) is given in Fig. 1(b). The zero energy
modes correspond to the corner states, which are well
separated in energy from other modes of the system. This
should be expected as, in the absence of nonlinear terms,
the model is essentially the same as that applicable to
coupled microwave resonators previously shown to exhibit
the same topological corner states [28]. Our main aim here
is to excite one of the corner modes coherently and couple
to other corner modes without affecting the topological
property of the system. In this way topological corner
modes may be used to store information as well as support

exchange of information among themselves. To do this we
consider all terms as described in Eq. (2) and take Fi as
proportional to the amplitudes in each micropillar corre-

sponding to one of the corner states, i.e., Fi ¼ fsψ
ðcÞ
i ,

where ψ ðcÞ is the corner state eigenfunction. We choose the
pump profile with the same spatial profile as the eigenstate
corresponding to n ¼ 1251, shown in Fig. 1(c), and also for
simplicity we fix Γ=2 ¼ P. With the proper choice of
parameters, we consider parametric instability in the system
where pairs of polaritons from this corner state can scatter
to the edge modes while conserving energy. This regime of
optical parametric oscillation (OPO) was previously deeply
studied in planar microcavities [65–69]. Due to secondary
parametric scattering processes [70,71], we expect that the
edge states will couple to another corner. In this way with
the help of the edge states we can nonlinearly couple the
two corners, as described by the schematic Fig. 1(d).
Parametric instability.—To investigate parametric insta-

bility we first drive the system to a steady state, which is
obtained by solving Eq. (2), and then study the behaviour
of linear (Bogoliubov) fluctuations

ψ i ¼ ψ ð0;iÞ þ uie−iωt þ v�i e
iω�t; ð3Þ

FIG. 1. (a) Schematic diagram of a square lattice formed by
coupled exciton-polariton micropillars with four different hop-
pings, J, −J, J0, and −J0, indicated by different colors. (b) Energy
eigenvalues of the system consisting of 50 × 50 micropillars, as a
function of the quantum number n. The modes corresponding to
n ¼ 1249–1252 are the corner states appearing at E ¼ 0, denoted
by red. The bulk and edge states are shown in blue and green,
respectively. (c) Spatial profile of the pumped corner state
corresponding to n ¼ 1251. (d) Schematic diagram of the optical
parametric scattering processes in the system. First polaritons
from the pumped corner state scatter to edge states (black arrows)
and then the polaritons from the edge states scatter back to the
adjacent corner state (red arrows). Parameters: J0 ¼ 5, Δ ¼ 0.
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ψ0 is the stationary solution of Eq. (2), which essentially
takes the form of the driven corner state; u and v are spatial
functions of the fluctuations. ψ ð0;iÞ is value of the ψ0 at the
lattice site i. Similarly ui and vi are the amplitudes of
fluctuations at lattice site i. Here ω is the frequency of the
fluctuations, which is in general complex to encapsulate the
instabilities of the system. Substituting Eq. (3) into Eq. (2),
we obtain the following eigenvalue equations

ωui ¼ ðiP0 þ Δ0Þui þ
X
hji

Jijuj þ ð1 − iαNLÞψ2
ð0;iÞvi;

ωvi ¼ ðiP0 − Δ0Þvi −
X
hji

Jijvj − ð1þ iαNLÞðψ�
ð0;iÞÞ2ui;

ð4Þ

where Δ0¼Δþ2jψ ð0;iÞj2 and P0¼P−ðΓ=2Þ−2αNLjψ ð0;iÞj2.
The eigenvalues of Eq. (4) are plotted as a function of the
quantum number l of the fluctuation in Fig. 2. The modes
corresponding to ImðωÞ > 0 indicate instability in the
system and these modes correspond to edge states when
plotted in real space [61]. Thus, polariton-polariton scatter-
ing induces coupling between the corner mode and edge
modes.
Corner-corner coupling mediated via parametric

interaction.—Now instead of depending on the linear
Bogoliubov theory we directly simulate the dynamics of
the system described by Eq. (2) starting from an initial
vacuum state corresponding to a zero mean field. At each
time step, the solution can be expanded as a linear super-
position of the eigenstates of the linear system as

ψ iðtÞ ¼
X
n

CnðtÞψ ðn;iÞ; ð5Þ

where CnðtÞ ¼
P

i ψ iðtÞψ�
ðn;iÞ. Physically jCnðtÞj2 repre-

sents the intensity (or overlap) of each eigenstate. A plot of
jCnðtÞj2 as a function of time is shown in Fig. 3 for n
corresponding to the excited corner, edge states, and
another adjacent corner state. Figure 3(a) shows that in a
very short time (much faster than the chosen range in the
time plotted), the excited corner reaches its steady state and
starts to couple to the edge states as shown in Fig. 3(b).
Note that the excited corner state couples with more than
one edge state and they have different intensity profiles
with time (here as an example we have plotted only one).
In Fig. 3(c) the intensity profile of the adjacent corner is
plotted with time and the nonzero value indicates that there
is coupling between the two corners. Without the nonlinear
terms, the coupling of the excited corner state to the edge
states or its adjacent corner state vanishes [61]. In a later
time we observe significant intensity corresponding to
another edge state as shown in Fig. 3(d), which eventually
has no effect on the steady adjacent corner state.
The possibility that the nonlinear terms directly couple

the corner states can not be discarded from the obtained
results so far. However the analysis of the linear fluctua-
tions can be repeated in the eigenbasis. Doing this in the
Supplemental Material [61], we find that there is no
parametric instability of a corner state into another corner
state but only into the edge states. Thus, we ascertain that
polaritons from the pumped corner mode couple first to an
adjacent edge mode and it is via this edge mode that
coupling to the adjacent corner mode is achieved.
The most important parameters in our scheme to realize

the coupling are the nonlinear interaction and loss terms.
Here the nonlinear self-energy in the system becomes about
1.36 meV, which is within experimental limits [72]. We have

(a) (b)

FIG. 2. Real and imaginary parts of the eigenvalues of the
fluctuations as a function of quantum number l in (a) and
(b) respectively. The states located at the corners are shown in
red. The bulk and the edge states are represented by blue and
green dots, respectively. Note that the total eight states corre-
sponding to the four corners are in the band gap in (a). The
positive imaginary part implies instability in the system and in the
real space those four states having ImðωÞ > 0 correspond to
different edge states. This also indicates that the pumped corner
state couples to more than one edge state. Parameters: J0 ¼ 5,
Δ ¼ −0.3, αNL ¼ 0.2, fs ¼

ffiffiffiffiffiffi
1.4

p
.

(a)

(c) (d)

(b)

FIG. 3. The overlap jCnðtÞj2 as a function of time for (a) the
excited corner, n ¼ 1251, (b) the edge state corresponding to
n ¼ 1208, and (c) the adjacent corner, n ¼ 1249. (d) In later time,
due to higher order terms, another edge state corresponding to
n ¼ 1238 appears in the system. The nonzero value of intensity
of the adjacent corner indicates that both the corners are coupled.
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taken the nonlinear loss coefficient as αNL ¼ 0.2, where a
similar value was used in Ref. [73].
Demonstration of transfer of binary information.—Here

we demonstrate that the coupling between corners mediated
by parametric instability is sufficient to transfer binary
information. Such demonstration is based on using near-
resonant coherent laser fields at each corner to place them in
a bistable regime, which forces each corner state to either be
in a low or high intensity state. Switching the state of one
corner results in a later switch of the adjacent corner state,
corresponding to a transfer of information. Remarkably, this
can occur even in the presence of a realistic level of disorder.
To show bistability we consider Eq. (2) with the pump

profile of the eigenstate n ¼ 1251 and n ¼ 1249, respec-
tively, and slowly vary the intensity of the pump in time
(over 9000 units ∼6000 ps). The intensity corresponding to
the corner sites ðC1 andC2Þ as a function of pump intensity
is plotted in Fig. 4(a), where the characteristic hysteresis
loops show that bistability is present (different corners are
nonidentical due to the lack of symmetry of the underlying
lattice, which is why the hysteresis curves are slightly
different). Gradually increasing the pump intensity to the
level marked by the vertical grey lines in Fig. 4(a), allows
each corner state to be initialized in its lower intensity state.
Next, we apply a coherent Gaussian shaped pulse at corner
C1 of the form F ¼ F0 expf−½ðx − x0Þ2 þ ðy − y0Þ2�=
L2 − ðt − t0Þ2=τ2 − iωptg, where F0 is the amplitude of
the pulse which is launched at ðx0; y0Þ, the coordinates of
C1; L and τ are the widths of the pulse in space and time.
The time dynamics of both the corner sites in presence of
the pumps and pulse is plotted in Fig. 4(b), which shows
that the pulse switches C1 from its lower state to the upper

state and then due to the parametric scattering, C2 also
switches to the upper intensity state. The same switching
does not occur in the absence of the pump at C1, that is, it is
only when the first corner supports bistability that a binary
signal can be transported and not just a direct effect of the
applied pulse [61].
All the calculations in this section were performed

considering also an on site disorder with uniform distri-
bution and peak to peak magnitude of 0.03. This, physi-
cally corresponds to a disorder strength of 30 μeV (for
J ¼ 1 meV), which has been recorded experimentally [63].
Advantage of topological corner states over regular

square lattice.—One could imagine that a similar scheme of
coupling could occur in nontopological systems. However
we have found that for similar parameters, a regular square
lattice operates much slower, not reaching a steady state even
after 5000 ps in the Supplemental Material [61]. This is
understandable from the fact that, in the considered scheme,
the linear decay is compensated by a nonresonant pump
and the only dissipation present is the nonlinear decay
(αNLjψ j2ψ). Since the regular square lattice does not show
any localized mode (all the modes are distributed over many
sites), for a particular site the decay αNLjψ j2ψ becomes very
weak and consequently the corner site reaches a steady state
very slowly. On the other hand, since the topological corner
modes are perfectly localized at the corners, this problem
does not arise. To solve this, we added some linear decay in
the system, which indeed made the system attain a steady
state faster, but we did not observe bistability in the case of a
regular square lattice within the same window of pump
intensity (or in fact a larger intensity window either).
Bistability did occur in the lattice with corner modes in
presence of linear loss. In this case polaritons are localized
and experience a stronger nonlinear interaction than the case
of delocalized polaritons in a regular square lattice that
automatically spread out over a wider area. In other words,
the advantage of the scheme with topological corner states
over a regular lattice is faster operation with lower power.
Conclusions.—We considered the appearance of topo-

logically protected corner states in a square array of coupled
exciton-polariton micropillars. These systems can be dis-
tinguished from other topological photonic systems by the
presence of significant nonlinearity arising from polariton-
polariton scattering.Herewe found that such processes allow
corner states to be nonlinearly coupled to edge states, which
can be further coupled to adjacent corner states. That is, in the
nonlinear regime, edge states act as intermediaries between
corners. It is generally speculated that topological modes can
be relevant in information processing and we anticipate that
the ability to couple multiple topological modes in a single
system will be essential to such directions [74,75].

We thank Sanjib Ghosh and Kevin Dini for helpful
discussions and comments. The work was supported by the
Ministry of Education, Singapore (Grant No. M0E2017-
T2-1-001).

(a) (b)

FIG. 4. (a) Hysteresis curve of polariton density vs pump power
for the two corner sites (C1 and C2). For the following plots we
fix the value of the pump at each site to the intensity indicated by
the vertical gray lines. (b) Time dynamics of the corner sites, C1
and C2 in the presence of a continuous pump at both corners and
pulse at C1 (which is gradually turned on to avoid unwanted
jumps in the initial stages). A pulse switches C1 from the lower to
upper intensity state and then due to the parametric scattering, C2
is also switched. We consider that the frequencies of both pumps
and the central pulse frequency are same. All the blue curves
correspond to C1 and red curves correspond to C2. Parameters:
Δ ¼ −0.3, F0 ¼ 33, x0 ¼ 1, y0 ¼ 1, L ¼ 1, t0 ¼ 1283, τ ¼ 15.
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