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Balancing nonlinear gain and loss automatically generates sub-Poissonian light, through negative
feedback, when the gain is significantly reduced (increased) by the addition (subtraction) of a single
photon. We show that micromaser trapping states can provide the necessary feedback in the presence of
photon loss and, with the addition of external parametric control, realize a photon number on the order of
100 and a Mandel Q parameter of −0.998, i.e., number squeezing of 27 dB.
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Sub-Poissonian light has attracted interest in quantum
optics since the early 1980s, when its study was first taken
up by Short and Mandel following prior observations of
photon antibunching in resonance fluorescence [1]. Early
measured departures from Poissonian counts [1,2] were
small, however, due to photon loss; and while closed loop
feedback produced a larger effect [3], the in-loop light is
inaccessible and submits to a semiclassical description
[4]. Further advances in the 1980s relied on high-
impedance suppression of pump fluctuations in semi-
conductor lasers [5] and light-emitting diodes [6] (see
Ref. [7] for a review).
Following these modest beginnings, recent interest may

be classified in three distinct categories: (i) development
of single-photon sources [8–11], driven by applications,
e.g., in linear optical quantum computing and quantum
communications; (ii) generation of energy eigenstates of a
photon number greater than one, with the experimental
observation of states of up to fifteen photons [12–22] and
theoretical proposals for arbitrary Fock-state generation
[23–28]; and (iii) further work on sub-Poissonian lasers that
exploits novel gain characteristics made available by cavity
and circuit QED [29–31]. In this Letter, we advance the
physics objectives in categories (ii) and (iii). We show that
intrinsic feedback, from gain nonlinearity, reduces photon
number fluctuations in a conventional laser, but is far too
weak to compete with the standard quantum limit. When
the gain function is sensitive to the addition or subtraction
of one photon, though, the principle is a powerful mecha-
nism for number squeezing; it is especially so in the vicinity
of gain function zeros [30–32]. As proof of principle, we
show how intrinsic feedback at a stable operating point
below a micromaser trapping state can generate a near-Fock
state of 126 photons.
Although fundamentally a quantum source of light, the

laser operates in a simplest description on the principle of
nonlinear gain balancing photon loss. On the gain side,
Einstein A and B theory [33] is all that is required to write

the balance equation, where for gain provided by N atoms
and with n photons in the field [34],

T−1
s Nn

�
1 −

n
nsat

�
¼ 2κn; ð1Þ

where T−1
s ¼ 4g2=γh is the stimulated emission rate per

photon, 2κ is the photon decay rate, and nsat ¼ γ↑γh=8g2

is the saturation photon number; g is the dipole coupling
constant, γh the homogeneous width, γ↑ an excited state
injection rate, and the gain-loss ratio in the linear regime
defines the pump parameter

℘ ¼ N=2κTs ¼ 2Ng2=γhκ: ð2Þ

Remarkably, the celebrated coherence seems to come for
free, a direct consequence of the balance between gain due
to stimulated emission and photon loss. It is important in
this regard that nsat is large, since it scales the photon
number, n ¼ nsatð℘ − 1Þ=℘, above threshold; it follows
that the number uncertainty of a coherent state is only a
small perturbation on the balance equation: n → nþ δn,
δn ∼� ffiffiffi

n
p

, yields the linearized gain-loss deficit

GðδnÞ − LðδnÞ
Gð0Þ ¼ −

1

℘
δn
nsat

∼ ∓ n−1=2sat : ð3Þ

While the negative feedback will work to stabilize n, it is
far too weak to reduce fluctuations below the standard
quantum limit.
The one-atom micromaser presents a rather different

scenario [35,36]. With nonlinear gain provided by a Rabi
oscillation of fixed duration Ti, Eq. (1) is replaced by

T−1
i Nsin2

�
gTi

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p �
¼ 2κn; ð4Þ
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where, on the gain side, we multiply a flux T−1
i N by the

probability that an initially excited atom adds a photon to
the field, n → nþ 1, at Ti. Now the linearized gain-loss
deficit is

GðδnÞ − LðδnÞ
Gð0Þ ¼ −

δn
SðnÞ ; ð5Þ

where

SðnÞ ¼
�
1

n
−

gTiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p cotðgTi

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Þ
�
−1
: ð6Þ

As shown in Fig. 1, stable (S) and unstable (U) operating
points lie on curves that pass through zeros of the gain
function, i.e., the trapping states [32]

nðkÞtrap ¼ ðkπ=gTiÞ2 − 1; k ¼ 1; 2;…; ð7Þ

where close to the zeros SðnÞ is small; thus, the operating
point at n ¼ 67 gives SðnÞ ¼ 2.2 and a gain-loss deficit of
nearly ∓ 50% for a change δn of just one photon. In this
Letter, we show how this strong negative feedback can be
used to generate bright sub-Poissonian light.
We first reproduce and extend the results of Chough and

Carmichael [37] demonstrating sub-Poissonian light gen-
eration in a quantum trajectory simulation of a free-running
micromaser; we thus demonstrate that negative feedback,
based on Eq. (6) and Fig. 1, leads automatically to a sub-
Poissonian steady state; we also expose various limitations
of the free-running approach. The remainder of the Letter
discusses the mitigation of these limitations: in a sequence
of five steps, we engage external parametric control to
progressively improve the results. We quantify this pro-
gression by the Mandel Q parameter, Q ¼ F − 1, where F
is the Fano factor, the ratio of photon number variance to
photon number mean: −10 logF is the level of squeezing
below the standard quantum limit expressed in decibels.
Pumping of the one-atom micromaser is provided by

a stream of qubits, prepared in the excited state, each
brought into interaction with a mode of the radiation field

(damped cavity) for an interaction time Ti—a qubit either
leaves behind a photon at Ti or it does not. With an average
number of simultaneously interacting qubits N and pump
rate T−1

i N, the gain function of Eq. (4) holds so long as
N ≪ 1. Following [37], we model this scheme for a
random qubit stream without the restriction N ≪ 1; sto-
chastic qubit pumping and photon loss are captured by a
three-part quantum trajectory algorithm: (i) Evolution of
the unnormalized ket jχðtÞi under the non-Hermitian
Hamiltonian

HðtÞ ¼ ℏg
XmðtÞ

j¼1

ða†σðjÞ− þ aσðjÞþ Þ − iℏκa†a; ð8Þ

where mðtÞ is Poisson distributed with mean N, and
fjg is an ordered labeling of qubits, eigenkets j�iðjÞ,
brought into interaction at times ftjg, t > tmðtÞ >
tmðtÞ−1 � � � > t1 > t − Ti. (ii) Jumps when a qubit is brought
into interaction, at time tk ∈ ftjg,

mðtkÞ → mðtkÞ þ 1;

jχðtkÞi → jχðtkÞijþiðmðtkÞþ1Þ; ð9Þ

and at time t0k ¼ tk þ Ti, when it is removed,

mðt0kÞ → mðt0kÞ − 1;

j → j − 1; j ¼ 2;…; mðt0kÞ;
jχðt0kÞi → ð1Þh�jχðt0kÞi; ð10Þ

where j�ið1Þ ¼ jþið1Þ or j−ið1Þ, as determined by random
selection from the probability that the discarded qubit is
excited. (iii) Jumps at rate 2κhða†aÞðtÞi due to photon loss:

jχðtÞi → ajχðtÞi: ð11Þ

Figures 2(a) and 2(b) present results obtained by time-
averaging quantum trajectory simulations of the free-
running micromaser. The first trapping state is fixed at

nð1Þtrap ¼ 1 [Eq. (7)] and two values of photon loss are
compared: with 2κTi set at 0.001 (0.01), N ranges from
0 to 0.4 (4.0) as the pump parameter, ℘ ¼ N=2κTi, varies
from 0 to 400. While the lower loss is compatible with the
one-qubit gain assumed by Eq. (4), the plots for higher
loss encounter multiqubit gain effects with increasing ℘:
the photon number is raised and becomes less sensitive to
trapping states—the oscillations in frame (a) decrease—
while oscillations of the Mandel Q parameter are damped
[frame (b)]. Note, however, that multiqubit gain cannot be
overlooked even for the lower loss, as passing through the
trapping states relies on it—the one-qubit gain goes to zero

at n ¼ nðkÞtrap ¼ 1; 7;….

FIG. 1. The function SðnÞ [Eq. (6)] is plotted for gTi ¼ π=
ffiffiffi
2

p
.

Vertical lines locate trapping states (photon numbers above),
where SðnÞ changes sign. Operating points S (U) from Fig. 2 are
marked at n ¼ 67 (76), S ¼ 2.2 (−2.2).
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Our interest lies with the oscillations of the Mandel Q
parameter in frame (b), which illustrate the principle, as
suggested by Eq. (5) and Fig. 1, that negative feedback will
automatically generate bright sub-Poissonian light below
the trapping states in the free-running micromaser. Frame
(c) shows the sub-Poissonian distribution for the operating
point S (stable) on Fig. 1, where a Mandel Q of −0.7 is
reached. Even when Q reaches a maximum at the
operating point U (unstable), the photon number is locally
squeezed [frame (d)]; the degraded global Q is the result of
switching between metastable states adjacent to the unsta-
ble operating point.
We aim now to exploit the demonstrated principle and

ultimately lower the Mandel Q from −0.7 to −0.998. Two
negative effects of the free-running protocol must initially
be overcome: first, the loading of high photon numbers
relies on fluctuations of the random pump stream to pass

through the trapping states—the process is exceedingly
slow and must be speeded up; second, though infrequent,
switching from a stable operating point to adjacent states
does occur, as evidenced by barely visible peaks at n ¼ 46
and 92 in Fig. 2, frame (c). These issues are addressed in
the series of three control protocols illustrated in Fig. 3:
Protocol III realizes aQ of −0.98with efficient loading and
loss from the targeted trapping state of less than 0.1%.
Further control then tightens the squeeze in Fig. 4, where
we achieve the ultimate Q of −0.998 with loss to adjacent
states reduced to the order of 0.01%.
Protocol I.—Slow loading is overcome by pumping with

a stream of qubits assigned random interaction times, i.e.,
with the nonlinear gain in Eq. (4) replaced by hTii−1N=2,
where hTii is the average time; the mean photon number
then grows as

FIG. 3. Preparation of bright sub-Poissonian light by intrinsic
feedback and controlled single-photon pumping. Plots follow
1000 quantum trajectories, with trapping states for gTi ¼ π=

ffiffiffi
2

p
shown as horizontal lines. Protocol I targets the sixth and eighth
trapping states, realizing hni ¼ 69 and 123, and a local Q of
−0.98. Protocol II targets the sixth, seventh, and eighth trapping
states, and realizes hni ¼ 69, 94, 123; Q ¼ −0.98. Protocol III
targets the second to eighth tapping states to realize hni ¼ 7,
17, 30, 47, 69, 94, 123 and Q ranging from −0.95 (low n) to
−0.98 (high n); realized photon number distributions are
compared with Poisson distributions of the same mean. All
results for g=2κ ¼ ðπ= ffiffiffi

2
p Þ × 103.

(a)

(b)

(c)

FIG. 2. Quantum trajectory simulation of the free-running
micromaser: (a),(b) hni and Mandel Q as a function of pump
parameter ℘ for gTi ¼ π=

ffiffiffi
2

p
and 2κTi ¼ 0.001 (red circles) and

0.01 (brown diamonds); (c) photon number distributions at stable
(S) and unstable (U) operating points compared with Poisson
distributions of the same mean. Solutions to Eq. (4) bound shaded
regions in (a) and horizontal lines indicate trapping states; the
lines hni ¼ ℘=2 and hni ¼ ð℘ − 116Þ=2 are also shown.
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hnðtÞi ¼ Nð4κhTiiÞ−1ð1 − e−2κtÞ; ð12Þ

and hTii may be set to target the negative feedback below a
particular trapping state. Random loading takes place
during the interval κτload in the top frame of Fig. 3, where
the target is the sixth (left) and eighth (right) trapping state.
Squeezing is incapacitated during random loading, though,
so we are left with a Poisson spread in the photon number.
The squeezing is now turned on by reverting to fixed Ti and

a regular pumping stream for the interval κτð1Þsqueeze in the
upper panel of Fig. 3; the photon number is squeezed
against the targeted trapping state and the one below with
loss on the order of 2%. Finally, we sweep up the
population from the state below the targeted trapping state:
this is achieved with Ti → Ti=2 (interval κτsweep), which
preserves even trapping states as stable states but desta-
bilizes all odd trapping states; reverting, Ti=2 → Ti, then
squeezes against the targeted trapping state again (interval

κτð2Þsqueeze) and realizes a Mandel Q of −0.98.
Protocol II.—The sweep strategy of Protocol I is limited

to the targeting of only even trapping states. We remove this
limitation by changing strategy during the interval κτsweep:
instead of Ti → Ti=2, we let Ti → Tsweep

i , with
ðktarget − 1Þ−1 < Ti=T

sweep
i < k−1target, which, according to

Eq. (7), places the first new trapping state just below the
old targeted state. As illustrated in the middle frame of

Fig. 3, this sweeps up everything from below the targeted
state and works for both even and odd targets. After

reverting—Tsweep
i → Ti in interval κτð2Þsqueeze—the same

MandelQ is obtained with similar loss, on the order of 2%.
Protocol III.—The origin of the loss in Protocols I and II

is the random interaction time during the loading phase.
We now eliminate that loss with a sweep directly out of the
vacuum state, following the successful sweep strategy
employed in Protocol II. The new two-stage protocol is
illustrated in the bottom frame of Fig. 3: during an initial
interval κτload, we set the first trapping state between the
targeted state and the one below, i.e., choose T load

i with
ðktarget − 1Þ−1 < Ti=Tload

i < k−1target; this loads the photons
ten times faster while at the same time executing a moderate
squeeze; we then revert, T load

i → Ti, during the interval
κτsqueeze to tighten the squeeze. Of the seven targeted

trapping states, only nð2Þtrap suffers any loss at all, to the

close adjacent trapping state nð3Þtrap, and the Mandel Q of
−0.98 is retained.
Protocols IV and V.—Once a stable operating point is

reached, e.g., S in Fig. 1, negative feedback squeezes the
photon number between the SðnÞ asymptote below that
operating point and the targeted trapping state above—n ≈ 59
and n ¼ 71 in Fig. 1; the level of squeezing is set by the slope
of the linearized gain-loss deficit at the operating point
[Eq. (5)]. We now extend Protocol III by increasing the
slope. We do so in a three-step sequence, as shown in
Fig. 4, in order to preserve photon number confinement.
Since SðnÞ depends on the parameter gTi [Eq. (6)], wemay
change either the interaction time Ti (Protocol IV) or the
coupling strength g (Protocol V). TheMandelQ of−0.998
is reached in the latter scheme, since it avoids the counter-
acting effects of larger κTi.
In summary, progressing from the free-running micro-

maser through Protocols I–III and on to Protocols IVand V,
the Mandel Q is first improved from −0.7 to −0.98 and
then from−0.98 to−0.991 and−0.998. Efficient loading of
a high photon number is introduced and loss from the
targeted trapping state is largely eliminated, with just one
of 10 000 trajectories lost in Fig. 4. Although a dipole
coupling strength of g=2κ ¼ ðπ= ffiffiffi

2
p Þ × 103 is large, it is

well within the scope of recent Rydberg atom systems,
where photon lifetimes of 65 ms with g ¼ 2π × 23.5 kHz
[38,39] and 0.2–0.3 s with g ¼ 2π × 6.5 kHz [12,13] are
realized. Significantly larger coupling strengths of tens to
hundreds of megahertz are achieved in circuit QED, and
while larger photon loss can offset that increase, single-
photon lifetimes for 3D cavities approaching 10 μs [40],
and even a remarkable 10 ms [41], have been reported.
Even Protocols I-III and Protocol IV realize significant

squeezing, where the Qs of −0.98 and −0.991 correspond,
respectively, to squeezing of 17 and 20 dB; Protocol V then
stands apart with a Q of −0.998 and squeezing of 27 dB.
Note that only Protocol V requires control of the coupling

FIG. 4. Progressive squeezing at the eighth trapping state for
gTi ¼ π=

ffiffiffi
2

p
. Protocol IV (V) takes steps 1.0Ti (1.0g), 1.5Ti

(2.0g), 2.0Ti (3.0g), 2.5Ti (4.0g). (Left) Plots follow 10 000
quantum trajectories; the number distribution is progressively
squeezed (inset). (Right) Stepped sequence of linearized gain-
loss functions SðnÞ with initial (broad blue) and final (narrow
red and orange) photon number distributions superposed and
compared. Protocol IV (V) realizes hni ¼ 124.7 (125.7) andQ ¼
−0.991 (−0.998). All results for g=2κ ¼ ðπ= ffiffiffi

2
p Þ × 103.
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strength, as the manipulations of Protocols I–IV are carried
out by changing the interaction time. While real-time
control presents an experimental challenge in either case,
the interaction time is probably the easier of the two
parameters to change: qubits might be switched in and
out of cavity resonance in a circuit QED setting, or different
velocity selected streams of atoms might be used in a
Rydberg atom system; changing the coupling strength
would likely require switching between distinct qubits
for each desired setting, or, if moving atoms are used,
different transits through a structured cavity mode.
Although 27 dB squeezing (Protocol V) presents a large

experimental challenge and is likely only a distant goal, our
proposal builds upon a simple and robust mechanism,
intrinsic feedback, which is worthy of further attention. The
generation of sub-Poissonian light in this approach poten-
tially has broad application, even to optical systems where
coupling strengths are less strong, albeit with less extreme
results. We also note that while, as described, Protocols I–V
prepare the state of a mode inside a cavity, subsequent free
decay to either waveguide or free-space modes would
output a pulse; alternatively, extending the time axis of
Figs. 3 and 4 provides a steady stream of output photons
after the manner of Refs. [29] and [31].
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