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In 1935, Einstein, Podolsky, and Rosen (EPR) formulated an apparent paradox of quantum theory
[Phys. Rev. 47, 777 (1935)]. They considered two quantum systems that were initially allowed to interact
and were then later separated. A measurement of a physical observable performed on one system then had
to have an immediate effect on the conjugate observable in the other system—even if the systems were
causally disconnected. The authors viewed this as a clear indication of the inconsistency of quantum
mechanics. In the parton model of the nucleon formulated by Bjorken, Feynman, and Gribov, the partons
(quarks and gluons) are viewed by an external hard probe as independent. The standard argument is that,
inside the nucleon boosted to an infinite-momentum frame, the parton probed by a virtual photon with
virtualityQ is causally disconnected from the rest of the nucleon during the hard interaction. Yet, the parton
and the rest of the nucleon have to form a color-singlet state due to color confinement and so have to be
in strongly correlated quantum states—we thus encounter the EPR paradox at the subnucleonic scale.
In this Letter, we propose a resolution of this paradox based on the quantum entanglement of partons.
We devise an experimental test of entanglement and carry it out using data on proton-proton collisions from
the Large Hadron Collider. Our results provide a strong direct indication of quantum entanglement at
subnucleonic scales.
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Introduction.—In quantum mechanics, the entanglement
of the quantum states of particles implies that a measure-
ment performed on one of the particles affects the state of
the entangled particle, even when they are located at large
distances. At first glance, this implies that information
would have to travel faster than the speed of light, which is
forbidden by special relativity; this was referred by Einstein
as “spooky action at a distance”. In recent years, quantum
entanglement has become the base of new technology,
including quantum computers [1] and quantum cryptogra-
phy [2]. At the same time, studies of entanglement in
hadron physics are just beginning.
The confinement of colored quarks inside hadrons

provides perhaps the most dramatic example of quantum
entanglement that exists in nature. Indeed, the quarks
within the hadrons are not just correlated, they simply
do not exist in the physical spectrum as isolated objects.
The mechanism of color confinement is one of the most
challenging problems in modern physics. It is universally

believed that quantum chromodynamics (QCD) should
correctly describe this phenomenon, but the underlying
dynamics is still mysterious. We hope that recasting
this problem in the language of quantum information
can shed new light on it and open new venues for
experimental investigations, including the one that we
describe below.
Information about short-distance QCD and the parton

structure is provided by hard processes, such as deep
inelastic scattering (DIS) of leptons off nucleons. Hard
processes are characterized by a large-momentum transfer
Q and probe short transverse distances ∼1=Q inside the
nucleons and nuclei. About fifty years ago, Bjorken and
Paschos [3], Feynman [4], and Gribov [5] formulated the
“parton model” of the nucleon that became the base for a
theoretical description of hard processes. The parton model
is usually formulated in a frame in which the nucleon
possesses a large momentum, and the partons are viewed by
an external hard probe as independent constituents that
carry different fractions x of the nucleon’s momentum.
The assumption that the quarks and gluons confined inside
the nucleon may be viewed as independent is striking.
The reasoning that is commonly invoked to justify this
assumption is that the parton probed at a short distance
∼1=Q is causally disconnected from the rest of the nucleon
during the hard interaction.
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Nevertheless, in spite of the spectacular success of the
parton model, its assumptions raise a number of conceptual
questions [6]. Indeed, the hadron in its rest frame is
described by a pure quantum state jψi with density matrix
ρ̂ ¼ jψihψ j and zero von Neumann entropy S ¼
−tr½ρ̂ ln ρ̂� ¼ 0. How does this pure state evolve to a set
of “quasifree” partons in the infinite-momentum frame?
If the partons were truly free and thus incoherent, they
should be characterized by a nonzero entropy resulting
from different positioning of partons in the configuration
space. Since a Lorentz boost cannot transform a pure state
into a mixed one, what is the precise meaning of quasifree?
What is the rigorous definition of a parton distribution
when applied to a pure quantum state?
Entanglement entropy and parton distributions.—

Recently, it has been suggested that this apparent paradox
can be resolved by the quantum entanglement of partons
[6]. Indeed, consider an electron-proton scattering with
momentum transfer Q depicted in Fig. 1(a). It is clear that,
since the transverse distance involved in this process ∼1=Q
is much smaller than the size of the proton, DIS probes only
a part of the proton’s wave function; let us denote it A. In
the proton’s rest frame, where it is definitely described by a
pure quantum mechanical state, DIS probes the spatial
region A localized within a tube of radius ∼1=Q and length
∼1=ðmxÞ, where m is the proton’s mass and x is the
momentum fraction of the struck quark. Inclusive DIS
measurements sum over the unobserved part of the wave
function localized in region B complementary to A. Hence,
we have access only to the reduced density matrix ρ̂A ¼
trBρ̂, but not the entire density matrix ρ̂ ¼ jψihψ j. The von
Neumann entropy, arising from the quantum entanglement
between regions A and B, namely, SA ¼ −tr½ρ̂A ln ρ̂A�

associated with the DIS measurement, is found [6] to
correspond to the entropy of independent partons and thus
to the parton distribution. Because region B is comple-
mentary to region A, the entanglement entropy SB asso-
ciated with it has to be equal to SA.
At small x, where gluons dominate, the relation between

the entanglement entropy SA and the gluon distribution [7]
xGðxÞ becomes simply

SA ¼ ln½xGðxÞ� ¼ SB: ð1Þ

Here we do not explicitly indicate the dependence of G on
the momentum transfer Q2. Equation (1) implies that at
small x all microstates of the system are equally probable
and the von Neumann entropy is maximal.
In the present Letter, we devise an independent exper-

imental test of measuring the entanglement entropy of
partons within the nucleon using the final-state hadron
multiplicity distribution PðNÞ, where PðNÞ is the proba-
bility of producing N particles in the system per event.
This will allow us to test the proposed relation between
the entanglement entropy and the parton distribution
given by (1).
In DIS experiments, the value of the entropy arising from

entanglement depends on the photon probe in terms of x
and Q2. However, the entropy SA resulting from the
entanglement of regions A with B and giving rise to the
parton distribution should always be equal to the entropy
SB resulting from the entanglement of region B with A and
giving rise to the final-state entropy of the fragmenting
nucleon. The latter quantity can be reconstructed from the
multiplicity distribution of the produced hadrons, which we
will denote as Shadron. Based on this argument and the
relation (1), we thus expect the following relation that can
be directly tested in experiments:

ln½xGðxÞ� ¼ Shadron: ð2Þ

This relationship can also be explored in proton-proton
(pp) collisions, as illustrated in Fig. 1(b). In this case, the
interaction region of the two protons is region A, whereas
the remaining system is region B. The signature of
entanglement remains the same: the entropy reconstructed
from the final-state hadrons should be equal to the
entanglement entropy of the initial-state partons.
Results.—Let us begin by testing the proposed idea in

the electron-proton DIS using Monte Carlo simulations.
Since the probabilistic Monte Carlo event generators do not
incorporate entanglement that generates entropy correla-
tions between causally disconnected spatial domains, we
do not expect relationship (2) to hold. Note that the
available experimental data on hadron distributions in
DIS, e.g., from hadron-electron ring accelerator (HERA)
experiments, do not cover the kinematic regime of interest
(x < 10−3) where relation (2) applies.
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FIG. 1. Illustrations of quantum entanglement in high energy
collisions. (a) Electron-proton (ep) deeply inelastic scattering,
where the virtual photon emitted by the electron probes part of
the proton, denoted as region A, while the unobserved part of the
proton is represented by region B. (b) Proton-proton inelastic
collision, where the interaction region is A and the remainder of
the system is B. The initial von Neumann entropy from regions A
and B is denoted as SA and SB, respectively. The final-state
hadron entropy Shadron is given by the Boltzmann entropy based
on the hadron multiplicity distribution PðNÞ.
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First we obtain the number of gluons Ngluon by integrat-
ing the gluon distribution xGðxÞ over a given rapidity y
range at a chosen scaleQ2 (integration over dy is equivalent
to dx=x due to change of variable). We use the leading-
order parton distribution function (PDF) set MSTW at the
90%C.L [8], shown Supplemental Material Fig. 3 [9]. Only
leading-order PDF sets are used in order to be self-
consistent with the theoretical prediction [6]. The entan-
glement entropy lnðNgluonÞ predicted from the gluon
distribution is shown in open black circles, with systematic
uncertainties depicted as the green band in Fig. 2. The
entropy of the final-state hadrons is shown as blue filled
circles. It is calculated from the multiplicity distribution

PðNÞ in a rapidity range determined by the x range used to
derive Ngluon. For details, see the Supplemental Material
[9]. PðNÞ is taken from ep DIS events created with the
PYTHIA6 event generator [13]. We have tested several
Monte Carlo event generators, such as PYTHIA6, PYTHIA8

[14], and DJANGO [15], and have found that they give
similar results. An example final-state hadron multiplicity
distribution is shown in Supplemental Material Fig. 4 [9].
It becomes clear from Fig. 2, that the two entropies, the

von Neumann entanglement entropy associated with the
gluon distribution lnðNgluonÞ, and the entropy reconstructed
from the final-state hadrons Shadron, are uncorrelated, as
expected for Monte Carlo models that do not possess
quantum entanglement. This correlation is absent for all
MC generators that we have studied.
With a clearly drawn baseline from the Monte Carlo

models, we can now look for entanglement in available
experimental data. Since suitable data in ep collisions do
not exist, we have to turn for our study to pp collisions
using data from the CMS experiment [16] at the LHC. As
outlined earlier, the signature of entanglement stays the
same (see also Fig. 1).
By performing an analysis similar to the one presented in

Fig. 2, we arrive at the results depicted in Fig. 3. Here we
show the comparison of the entanglement entropy pre-
dicted from the gluon distribution (three different leading-
order PDF sets are indicated by open symbols) and the
Boltzmann entropy based on the final-state hadron multi-
plicity PðNÞ distribution (in filled symbols) as a function of
x. Since x and momentum transfer scale Q2 are not directly
available in pp collisions (unlike in ep experiments), an
alternative way of comparing the entropy at similar x and
scales is used as detailed in the Supplemental Material [9].
The experimental data from CMS are shown in three
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FIG. 2. Entanglement entropy in Monte Carlo generator
PYTHIA6. The entanglement entropy predicted from the gluon
distribution (MSTW) as a function of x at momentum transfer
scale Q2 ¼ 2 and 10 GeV2 (open circles). The green band
represents the symmetric systematic uncertainty at 90% C.L.
The entropy obtained from the final-state hadron multiplicity
distribution PðNÞ, from PYTHIA6 simulations at the same values
of Q2, is shown via blue filled circles. The statistical uncertainty
is invisible on the scale of the plot.
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FIG. 3. Entanglement entropy in proton-proton collisions at the LHC. The Boltzmann entropy calculated based on the final-state
multiplicity PðNÞ distribution in pp collisions [16] at the LHC in different pseudorapidity ranges is shown as a function of x indicated
by the filled squares, where the total uncertainty is denoted by the error bars. The expected entanglement entropies from the gluon
distribution are presented with open markers using different PDF sets [8,17,18]. The bands denote the systematic uncertainty associated
with the PDF. The saturation scale Q2

s [19] for gluons at each x value is indicated on the top axis.
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different pseudorapidity [20] η ranges within �0.5, �1.0,
and �2.0 units. Data from the pseudorapidity range within
jηj < 1.5 and 2.4 are depicted in Supplemental Material
Fig. 1 [9]. The measurements of multiplicity distribution
in pp collisions performed by other LHC experiments,
e.g., ATLAS [21] and ALICE [22], are consistent with
CMS for the same pseudorapidity ranges where available.
In this analysis, we use only CMS data since they provide a
wide set of central pseudorapidity ranges not available
elsewhere.
In contrast with what we have observed in ep

Monte Carlo simulations, we find that the experimental
data from pp collisions at the LHC presented in Fig. 3
show a striking agreement between the entanglement
entropy predicted from the gluon distributions and the
Boltzmann entropy from the final-state hadron multiplicity
distributions in all jηj ranges. Note that a constant density
of hadrons per unit of rapidity usually associated with
string fragmentation would imply a flat horizontal line in
Figs. 2 and 3, in conflict with the experimental data
observed in pp collisions. In addition, the relation (2) is
expected [6] to hold for x < 10−3, and the data are in good
agreement with this prediction. This observation provides a
strong direct indication of quantum entanglement at sub-
nucleonic scales. The discrepancy observed toward higher
x might be due to non-negligible contributions from sea
quarks at low Q2 scales. A theoretical computation of the
entanglement entropy including sea quarks is not yet
available and will be an important study in the future.
It is interesting to discuss the relation between the

hypothesis of “local parton hadron duality” (LPHD) [23]
and our results. The LPHD hypothesis states that the
differential distributions of hadronic final states are propor-
tional to the ones evaluated at the parton level, at a small
virtuality scale. In particular, the number of produced
hadrons is postulated to be proportional to the number
of produced partons. The LPHD is well supported by the
available data, but its origin remains mysterious and has
been attributed [24] to the “preconfinement” property of
QCD cascades [25,26]. The relation (2) that we have tested
using the data is consistent with LPHD, provided that both
the gluonic and hadron states possess the maximal entropy,
i.e., are equipartitioned. It is thus possible that LPHD may
have an entropic origin.
Summary.—The results reported in this Letter provide a

new perspective in understanding the proton structure and
shed light on the nature of color confinement. Our analysis
of the experimental data from the LHC supports the
resolution of an apparent paradox between the parton
model and quantum mechanics based on quantum entan-
glement. In the future, it will be imperative to verify this
result in electron-proton and electron-ion collisions at small
x that will require a future facility such as the electron-
ion collider [27]. It will be also important to study the real-
time evolution of quantum entanglement in high energy

processes; such studies have already begun [28–31].
See the Supplemental Material for the technical details
of computing entanglement entropy using partons and
final-state hadrons [9].
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