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Brownian motion is a Gaussian process described by the central limit theorem. However, exponential
decays of the positional probability density function PðX; tÞ of packets of spreading random walkers, were
observed in numerous situations that include glasses, live cells, and bacteria suspensions. We show that such
exponential behavior is generally valid in a large class of problems of transport in random media. By
extending the large deviations approach for a continuous time random walk, we uncover a general universal
behavior for the decay of the density. It is found that fluctuations in the number of steps of the random walker,
performed at finite time, lead to exponential decay (with logarithmic corrections) of PðX; tÞ. This universal
behavior also holds for short times, a fact that makes experimental observations readily achievable.
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The emergence of normal Gaussian statistics for various
random observables in nature is widespread. Examples
range from chest sizes of Scottish soldiers [1] to Brownian
motion [2]. This “popularity” is attributed to the central
limit theorem (CLT). The statement of the CLT is that, at its
center, the distribution of a sum of independent, identically
distributed, random variables is Gaussian. However,
recently, striking deviations from Gaussian behavior were
recorded in a large number of experiments tracking spatial
diffusion of tracer particles in various media. Interestingly,
in many measurements, the observed probability density
function (PDF), PðX; tÞ, attains an exponential (or close to
exponential) decay. Examples include colloidal suspen-
sions [3–5], nanoparticles in polymer solutions [6],
molecular motion on a solid-liquid interface [7,8], living
cells [9], phospholipid fluid tubules and biofilament net-
works [10,11], active gels [12], financial markets [13],
colloidal glasses [14,15], worms [16], and suspensions of
swimming microorganisms [17,18] (more examples are
provided in [10,19]).
Appearance of a few jumps or excursions that dominate

the process is a common feature in a portion of these
experiments. For a bead in a bacteria suspension, such
“jumps” were attributed to temporal adhesion of the
particle to a bacteria flow that establishes short-term motion
alongside the bacteria [18]. In the F-actin random network,
the displacements are myosin driven excursions [12],
while for Lennard-Jones suspensions, there are “cage-
breaking” events [3]. The later system is one of four
different (experimental and numerical) systems analyzed
by Chaudhuri et al. [14]. In this work, the authors noticed
that particle displacement measured in: dense suspension
of colloidal hard spheres, slowly driven dense granular
assembly, silica melt, and a binary Lennard-Jones mixture,
all showing the same universal feature of exponential decay
for PðX; tÞ of the traced particles. Moreover, the authors

used a special variant of the continuous time random walk
with two exponential PDFs for waiting times and two
Gaussian distributions for the sizes of the jumps in order
to reproduce the observed behavior. These findings lead to
questions regrading the universality of exponential decay.
How can a basic random walk approach give rise to a theory
that produces universal exponential decay for systems with
various distributions for jump sizes and waiting times? Is
there a large class of processes that attains such universality,
and if so, what is the precise mathematical description of
the mentioned exponential decay? We wish to develop this
theory and identify such a broad class of processes by
focusing on the role of the randomness of the number of
jumps of a particle in an experiment.
In this Letter, we propose to reconcile observed non-

Gaussianity by explicitly invoking the continuous time
random walk (CTRW) formalism [20], but without restrict-
ing ourselves to specific examples. Specifically, we extend
the approach of large deviations to both space and time.
The random number of measured jumps naturally occurs in
CTRW due to random waiting times between the jumps.
While, for a constant number of jumps, the large deviations
approach fails to produce universal behavior (as we show
below), the situation with a random number of jumps that
we treat here is quite different. We develop a subordination
approach for large deviations and show that, for any
process that involves a random number of jumps and
can be modeled by CTRW, a very general statement holds:
the exponential tails for the positional PDF are rather a rule
and not an exception. The exponential decay of the tails is a
general feature exactly like the Gaussian behavior (that is
dictated by CLT) at the center.
First, let us stress out why, mathematically speaking, the

numerously observed exponential decay is unexpected
from the stand point of a regular random walk and standard
large deviation approach [21–26]. The random walk
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definition is as follows, at each step, a particle can perform
a step of size x, while the PDF of x is given by fðxÞ. AfterN
steps, the position X is simply the sum of all random and
independent steps X ¼ P

N
i¼1 xi. We will concentrate on the

case when fðxÞ is symmetric and decays as fðxÞ ∼
exp ½−ðjxj=δÞβ� when jxj → ∞, (β > 1). Namely, here,
we exclude the power law decay of fðxÞ, in particular,
we are in the domain of attraction of the Gaussian CLT.
Indeed, the first moment hxi is 0 due to symmetry and the
second moment, hx2i ¼ R

∞
−∞ x2fðxÞdx, is finite. Thus,

according to CLT, when jXj=N is not large, the PDF to
find the particle at position X after N steps, i.e.,
PNðXÞ ∼ exp f−N½ð1=

ffiffiffiffiffiffiffiffiffiffiffi
2hx2i

p
ÞðjXj=NÞ�2g. All the differ-

ent properties of fðxÞ enter solely via hx2i, the functional
Gaussian form is universal. The situation for the tails is
quite different. According to the theory of large deviations
and, more specifically, Cramér’s Theorem [21], for large
N → ∞, PNðXÞ ∼ exp ½−NIðjXj=NÞ� where the rate func-
tion IðaÞ¼ supΩfΩa− log½hexpðΩxÞi�g. For small jXj=N,
this leads to the quadratic form of IðjXj=NÞ and the already
mentioned Gaussian behavior of PNðXÞ at the center.
But for the tails, a straight-forward result of this theorem
is that, when jXj=N → ∞, the rate function takes the form
IðaÞ ∼ aβ and

PNðXÞ ∼
N→∞

exp

�
−N

�
1

δ

jXj
N

�
β
� jXj

N
→ ∞: ð1Þ

Indeed, if β ¼ 2, PNðXÞ is Gaussian, and hence, exponen-
tial tails are not present. From Eq. (1), it becomes quite
obvious that the functional form of the decay is β dependent
and nonuniversal. It is natural to expect that the decay of the
tails is very specific. This is why, based on the regular
random walk perspective, the large number of different
experiments that show very similar functional decay (i.e.,
exponential) is definitely unexpected. Unless one assumes
intrinsic exponential distribution for the jumps of the
particle (β ¼ 1) in all the different experiments, which is
unlikely.
We already mentioned our intention to resolve this issue

by using the fact that the number of steps in most experi-
ments is random for any finite measurement time t.
Probably the simplest assumption is that the particle will
wait for some random time τ between successive steps.
This assumption is exactly the framework of CTRW, and
it leads to the randomization of N [27]. The CTRW is a
widely applicable model for transport in disordered media
[27,28] that describes a particle that performs random
independent steps x, determined by the PDF fðxÞ, and
between two successive steps, the particle waits a random
time τ that is distributed according to ψðτÞ. All the waiting
times are independent. The probability of observing N
steps at time t, QtðNÞ, is fully determined by ψðτÞ (see
below). For CTRW, the position X ¼ P

N
i¼1 xi depends both

on the random fxigs and the random N. By conditioning

on the specific outcomes of N steps, the PDF to find the
particle at X at time t is

PðX; tÞ ¼
X∞
N¼0

PNðXÞQtðNÞ: ð2Þ

Equation (2) is also known as the subordination of the
spatial process for X by the temporal process for N [27,
29–32]. The regular approach for CTRW without anoma-
lously large jumps [28] is to replace PNðXÞ in Eq. (2) by
the Gaussian approximation. From Eq. (1), it is clear that,
for the tails, the Gaussian approximation is simply incor-
rect, unless β ¼ 2. In order to accomplish the calculation of
PðX; tÞ for large jXj, the first thing to do is to insert the
form of PNðXÞ in Eq. (1) into Eq. (2), instead of the
Gaussian approximation, i.e., subordination of large devia-
tions. In Eq. (2), one notices that, for large jXj, the form of
large deviations for PNðXÞ [i.e., Eq. (1)] states that all the
small N contributions of PNðXÞ are negligible, as com-
pared to large N. So the sum in Eq. (2), with Eq. (1) for
PNðXÞ, is affected only by large N values of QtðNÞ when
jXj is large [see Supplemental Material [33] (SM)]. Indeed,
for any fixed t, the position jXj can be chosen arbitrarily
large in order to suppress all the contributions of
PNðXÞQtðNÞ, for any finite N. Thus, it is crucial to obtain
the large N behavior of QtðNÞ.
QtðNÞ in the N → ∞ limit is the probability of occur-

rence of a rare event, i.e., a large number of steps, in finite
time. The distribution of the dwell time τ between two
steps, ψðτÞ, is independent of previous or following waiting
times. The probability QtðNÞ is the probability thatP

N
i¼1 τi < t while

PNþ1
i¼1 τi > t, where fτig are the waiting

times. Because of the convolution property of Laplace
transform, Q̂sðNÞ ¼ R∞

0 exp ð−stÞQtðNÞdt is [37,38]

Q̂sðNÞ ¼ ψ̂ðsÞN ½1 − ψ̂ðsÞ�=s; ð3Þ

where ψ̂ðsÞ ¼ R∞
0 ψðtÞ exp ð−stÞdt. It is assumed that the

short time (τ → 0) Taylor expansion of ψðτÞ is

ψðτÞ ∼
τ→0

X∞
j¼0

CAþjτ
Aþj; ð4Þ

where A ≥ 0 is an integer. This is a very natural
assumption, as it merely demands that ψðτÞ will be analytic
at the vicinity of τ ¼ 0. In the SM, we use a power series
expansion of Q̂sðNÞ to show that the leading term ofQtðNÞ
in the large N limit is

QtðNÞ ∼
N→∞

f½CAΓðAþ 1Þ�1=ðAþ1ÞtgNðAþ1Þ

Γ½NðAþ 1Þ þ 1� eðCAþ1=CAÞt; ð5Þ

see Fig. 1. QtðNÞ attains the form of the large deviation
principle,QtðNÞ ∼ exp ½−NITðt=NÞ� (see SM). This general
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result holds for any ψðτÞ, while t is kept constant and
N → ∞. It is not affected by the large τ behavior of ψðτÞ and
includes situations when hτi → ∞, i.e., anomalous diffusion
[27,28]. For the case when ψðτÞ is exponential, QtðNÞ is
a Poisson distribution and Eq. (5) agrees perfectly with
this fact. If A ¼ 0, namely, limτ→0 ψðτÞ ¼ C0, then C0 is

acting like an effective rate, similar to 1=hτi for the
Poisson distribution.
Supplemented with the general result for QtðNÞ and

using Eq. (1) for PNðXÞ, we finally obtain the tail behavior
of PðX; tÞ. We plug Eq. (1) and Eq. (5) into Eq. (2),
approximate the sum by an integral over N, and obtain

PðX; tÞ ∼
Z

∞

0

exp

�
−N

��
1

δ

jXj
N

�
β

−
CAþ1

CA

t
N
− ðAþ 1Þ

�
log

�½CAΓðAþ 1Þ�1=ðAþ1Þ

Aþ 1

t
N

�
þ 1

��zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{KðNÞ �
dN: ð6Þ

Clearly, this represents a subordination of the large
deviations result, i.e., Cramér’s theorem with the just
obtained universal QtðNÞ. Now, we use the saddle point
approximation in order to calculate the integral for jXj → ∞.
We find that the maximum of KðNÞ is achieved for

N� ¼ jXjg0W0

��
g1

jXj
t

�
β
�
−1=β

; ð7Þ

where g0 ¼ ½βðβ − 1Þ=ðAþ 1Þ�1=β=δ, g1 ¼ fg0ðAþ 1Þ=
½CAΓðAþ 1Þ�1=ðAþ1Þg and W0ðyÞ is the principal branch
of a Lambert W function [39–42], i.e., a solution of the
equation WðyÞ exp ½WðyÞ� ¼ y. Therefore, the asymptotic
behavior of PðX; tÞ in the jXj → ∞ limit is provided by

PðX; tÞ ∼
jXj→∞

exp f−t½jXjt ZðjXjt Þ þ C�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K00ðN�Þp ; ð8Þ

where

ZðyÞ ¼
ðg0ðAþ1Þ

β þ 1

gβ−1
0

δβ
ÞW0½g1yβ� − g0ðAþ 1Þ
W0½g1yβ�

1
β

; ð9Þ

and C ¼ −CAþ1=CA. The function W0ðyÞ (y ≥ −1=e)
is a monotonically increasing function with sublogarithmic
slow growth, logðyÞ − log½logðyÞ� ≤ W0ðyÞ ≤ logðyÞ −
1
2
log½logðyÞ� for e ≤ y [43]. The asymptotic expansion for

y → ∞ is W0ðyÞ ∼ logðyÞ − log ½logðyÞ� and in the limit
jXj=t → ∞, Eq. (8) obtains the form

PðX;tÞ ∼
jXj=t→∞

exp

�
−t
�
κ log

�jXj
t

�
1−1=β jXj

t
þC

��
; ð10Þ

and κ ¼ ½g0ðAþ 1Þ=β þ 1=gβ−10 δβ�β1−1=β. This result states
that the tails ofPðX; tÞwill exhibit almost exponential decay.
The logarithmic corrections, due to slow sublogarithmic
growth of Zð…Þ in Eq. (8), will cause small deviations from
pure exponential behavior, and overall, it would seem that
yZðyÞ þ C converges to linear form. In Fig. 2, this (approx-
imately) exponential behavior of PðX; tÞ is displayed for
two different pairs of fðxÞ and ψðτÞ. An argument that
explains the appearance of exponential decay is related to
the observation that N� is proportional to jXj (neglecting
the logarithmic corrections). According to the saddle point
approximation, N� is the dominating N for PðX; tÞ (an
exactly solvable example is provided below). Hence, replac-
ing N with N� in Eq. (1), we obtain a universal exponential
decay. Namely, the β dependence disappears since
ðjXj=N�Þβ is constant. As we already mentioned, in the
case of PðX; tÞ, t is not limited to the domain of large values.
If t can take small enough values, while keeping the values
of ZðjXj=tÞjXj=tþ C not too large, the exponential behavior
can be readily observed in an experimental situation
(see below).
This is why, in any system where the CTRW description

is applicable, the exponential decay is expected. The
CTRW framework requires the existence of local trapping
(or suppressed motion) and relatively fast spatial transi-
tions, i.e., jumps, between the trapping regions. Specifically
relevant are the glassy systems [44], where the CTRW

FIG. 1. Numerical simulations (symbols) of QtðNÞ are com-
pared to Eq. (5) (lines) for three different ψðτÞs. Square is the Half
Gaussian Distribution ψðτÞ ¼ ð2=5πÞ expð−τ2=25πÞ, measure-
ment time is t ¼ 1.5. Circle is a special form of Beta distribution
ψðτÞ ¼ 6τð1 − τÞ, 0 ≤ τ ≤ 1 (t ¼ 1.5), and Triangle is the
Dagum distribution ψðτÞ ¼ 1=ð1þ τÞ2, while measurement time
t ¼ 2.5.
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approach [14,44,45], proved to be useful. The dynamics of
single glass formers, e.g., colloids, often presents itself in
the form of fast cage-breaking events [3], while between the
fast events the colloid is trapped by its neighbors. In the
case of molecular motion on a solid-liquid surface [7,8],
the molecules are switching between periods of immobi-
lization (trapping) on the surface and fast displacements
(jumps) produced by excursions through the liquid bulk.
The motion of a bead in a suspension of eukaryotic
microswimmers is composed of periods of diffusion in
the liquid media (suppressed motion) and short periods of
fast and extensive motion (jumps) due to entrainment by
nearby swimming microswimmers [17,18]. Another exam-
ple is the transport of charged carriers in amorphous
semiconductors where the charges tend to get trapped by
imperfections of the surrounding media and the motion is a
combination of periods of trapping and fast transitions (i.e.,
jumps) between those traps [46]. Experimental and theo-
retical studies of motion of molecular motors on top of
cytoskeletal networks also show that, for this case, the
motion is described by trapping at points of high concen-
tration of filaments and relatively fast transitions between
such regions [47,48]. The randomness in the number of
such N jumps is what makes it an important factor behind
the observed universal exponential decay of PðX; tÞ, and
the convergence to exponential behavior occurs even on
time scales when the average number of jumps is small.
For example, in glassy systems [14], the number of cage
breaking events was small. As discussed below, when
observation time is of the order of the typical waiting time,
the exponential tails are readily achieved, while when the
measurement time is much longer, the effect is found in far
tails of PðX; tÞ. We must note that the exponential tails were

also observed for systems with memory, i.e., fractional
Brownian motion [49], so there is a possibility that the
CTRW universality class can be further extended.
When the exponential decay of the tails of PðX; tÞ is

compared to Gaussian behavior at the center, it is important
to stress out the different timescales when these two
behaviors will take place. The Gaussian behavior will
appear only when the measurement time is sufficiently
long, while the exponential decay will take place for any
time (as we already mentioned). Both features are based on
statistics of large numbers of events. While for the center of
PðX; tÞ, large numbers of events are sampled only for long
enough time, the tails that describe the rare events are, by
themselves, a manifestation of appearance of a large group
of events. Then, it is expected that, in an experimental
situation, the exponential decay will show itself long before
the convergence to Gaussian behavior will appear [11].
As previously mentioned, the exponential behavior is

expected to appear when N� becomes proportional to jXj
[Eq. (7)]. Let us further investigate this for the case of
exponential ψðτÞ ¼ expð−τÞ=hτi and Gaussian fðxÞ ¼
expð−x2=2σ2Þ=

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
PDFs. For this case, the exact

solution for jXj ≠ 0 is

PðX; tÞ ¼
X∞
N¼1

ðt=hτiÞNe−t=hτi
N!

e−X
2=2Nσ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πNσ2
p ; ð11Þ

For fixed X and t, we search for the N that gives the largest
term in the sum. In the inset of Fig. 3, we plot this N� as
a function of X and find a nearly linear behavior with X.

FIG. 2. Universality of exponential tails. Comparison of PðX; tÞ
obtained from CTRW simulations (symbols) and theoretical
prediction, Eq. (8), without fitting (see SM). Circle displays
CTRW where fðxÞ is uniform between −0.5 and 0.5 (and zero
everywhere else), ψðτÞ ¼ 1=ð1þ τÞ2, t ¼ 1.5, and the theory is
the thick line. Triangle is for fðxÞ ¼ expð−50x2Þ= ffiffiffiffiffiffiffiffiffiffi

π=50
p

, ψðτÞ
is uniform between 0 and 1 (and zero everywhere else), t ¼ 1.5,
and the theory is the dashed line. Notice the log-linear coor-
dinates, indicating that PðX; tÞ is exponential as in many experi-
ments mentioned in the introduction.

FIG. 3. Appearance of exponential tails for the case of
ψðτÞ ¼ expð−τÞ, fðxÞ ¼ expð−x2=2σ2Þ=

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
, and σ ¼ 0.25.

Inverted triangle are simulations for t ¼ 1 and circle are for t ¼ 5.
The dashed lines are Gaussian approximations at the center
while the thick lines are predictions due to Eq. (8). The deviations
from the Gaussian start for jXj > t and the trajectories with
N > t contribute to the tail behavior, where the average number
of jumps per trajectory is t and N > hNi. The inset describes
the N that gives rise to the maximal term in the sumP∞

N¼0 PNðXÞQtðNÞ for t ¼ 1. Because of the discrete nature
of N� the growth appears in a steplike fashion. The dashed line is
the behavior of N� according to Eq. (7) and is approximately
linear.
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The result agrees perfectly with Eq. (7). In this example, N�
is a linear function of jXj when jXj=σ > t=hτi and trajecto-
ries withN > t=hτi contribute to the exponential regime (see
SM for more details). The average numbers of jumps that are
used in Fig. 3 are 1 and 5. In several experiments [14], where
exponential decay is evident, hNi was also recorded to be
small. For long measurement times, Eq. (8) also holds, and
the exponential tails are simply pushed towards really small
values of PðX; tÞ, i.e., far from the center.
We presented a space-time theory for large deviations of

the widely applicable continuous time random walk. This
theory provides an explanation for a large class of recent
experimental observations of diffusion processes. In this
sense, the reported universal behavior is likely to establish a
link between experiments and the theory of large devia-
tions. The large deviation principle for space, PNðXÞ ∼
exp½−NISðX=NÞ� Eq. (1), and for time QtðNÞ ∼
exp½−NITðt=NÞ� Eq. (5), were described by rate functions
ISð…Þ and ITð…Þ, respectively. The subordination
approach yielded our main result, Eq. (8), where the rate
function ðjXj=tÞZðjXj=tÞ þ C controls the decay of the
PDF. However, it is remarkable that our theory works for
any t. This stems from the fact that, once X is large, a large
number of jumps is needed to arrive at this position. When
the number of jumps is fixed, as in a standard random walk,
the widely observed universal decay is completely missed.
In the mathematical literature, the CTRW is known as the
renewal-reward process. The large deviation behavior of
the renewal-reward process was studied in several works
[50–52] but in the t → ∞ limit. Deviations from the
presented theory are expected when ψðτÞ is nonanalytic
in the vicinity of τ ¼ 0 or when the decay of fðxÞ is broad,
e.g., power law.
It is also worth mentioning that the CTRW formalism

will present a Fickian diffusion, i.e., linear growth of the
mean squared distance with time, as long as hτi is finite
[53]. This means that the presented broad class of models
investigated here will also show the widely investigated
Fickian yet non-Gaussian behavior [10,11,19,54–56]. The
presented results can be generalized to the case of asym-
metric fðxÞ, where we expect to observe asymmetrical
exponential decay. Finally, we notice that the presented
results are expected to have a high impact on the field
of triggered reactions in physics, chemistry, and biology
[57–59]. In any situation where a reaction occurs as a result
of a first arrival, the universal rare behavior described here
will dominate due to the simple fact that exponential decay
is significantly slower than the Gaussian case of simple
diffusion. This has crucial consequences for transport in
such systems as the living cell [59,60].
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