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What is the fastest way to heat a system which is coupled to a temperature controlled oven? The intuitive
answer is to use only the hottest temperature available. However, we show that often it is possible to achieve
an exponentially faster heating protocol. Surprisingly, this protocol can have a precooling stage—cooling
the system before heating it shortens the heating time significantly. To demonstrate such improvements in
many-body systems, we developed a projection-based method with which such protocols can be found in
large systems, as we demonstrate on the 2D antiferromagnet Ising model.
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Consider the common task of cooling a hot system by
coupling it to a thermal reservoir with a controlled temper-
ature, as a refrigerator. It is counterintuitive but well
understood that a preceding heating stage followed by a
slow cooling stage often shortens the overall cooling time.
Indeed, annealing techniques are widely used in the
industrial treatment of metals, glasses, and crystal lattices
[1,2]. A similar approach is used in simulated annealing
[3–6]. These Monte Carlo (MC) optimization algorithms
find an approximation of the global minimum of a function,
using an artificial temperature which characterizes the
probability to accept a step to a state with a different value
of this function. In order to escape local minima, the
temperature is initially set to a high value, then slowly
decreased. Another nonmonotonic relaxation phenomenon
is the Mpemba effect (ME) [7–13], where an initially hot
system cools faster than an identical system initiated at a
lower temperature. In contrast to annealing, where the
heating can be fast but the cooling must be slow, in the ME
the temperature of the bath is lowered instantaneously.
Although the ME seems to suggest that a preheating stage
can shorten cooling processes, it is not necessarily the case
since the preceding stage might take a longer time than
gained.
Are there cases where it is faster to heat a system by first

cooling it? Improving the heating rate by changing other
variables was already concerned in the shortcut to adiaba-
ticity literature [14–16] and is relevant in many applica-
tions. For example, shortening the heating stroke period in
a heat engine can improve its power output [15,17,18]. The
recently introduced inverse Mpemba effect (IME) [19],
where a cold system heats faster than an identical system
initiated at a warmer temperature, suggests that this might
be possible. Nevertheless, it does not imply that precooling
speeds up heating for a similar reasoning as in the ME—the
cooling stage might take a longer time than gained by
the IME.

In this manuscript we show that a precooling strategy can
result in an exponentially faster heating. After formulating
the problem of optimal heating, we find the optimal heating
protocol in a four-state system, and a simple precooling
protocol in a diffusion problem. In both examples the
system does not exhibit any variant of the IME, demon-
strating that such protocols are not a consequence of the
IME, and are expected in a wider range of systems. To
address many-body systems and avoid intractable calcu-
lations, we then extend our strategy by a projection of the
dynamics into a lower dimension space. This method is
demonstrated in the 2D antiferromagnet Ising model.
To define “shorter heating time,” we next introduce the

mathematical setup. For simplicity let us first consider
systems with N states. Let piðtÞ denote the probability to
find the system in state i at time t. A probability distribution
of an N-state system is represented by p ¼ ðp1;…; pNÞ,
with

P
N
i¼1 pi ¼ 1. The thermal bath is assumed to have

zero memory, and thus the dynamic of pðtÞ is Markovian,

_pðtÞ ¼ RðTbÞpðtÞ: ð1Þ

The transition rate from state j to state i is given by the
matrix element RijðTbÞwhere Tb is the bath temperature. A
diagonal element RiiðTbÞ ¼ −

P
j≠i RjiðTbÞ is the minus of

the escape rate from state i. As RðTbÞ describes relaxation
towards equilibrium, it is detailed balanced and its equi-
librium probability distribution, denoted by πðTbÞ, is given
by the Boltzmann distribution:

πiðTbÞ ¼
1

Z
e−Ei=Tb ; Z ¼

X

i

e−Ei=Tb ; ð2Þ

where Ei is the energy of state i and Tb is in units where
kB ¼ 1. By writing RðTbÞ we assume that the only degree
of control at our disposal is the bath temperature.
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We consider heating processes in which the system is
initiated at the equilibrium πðT0Þ for a specific temperature
T0 < Tmax, where Tmax is the maximal temperature of the
bath. Our goal is to heat the system towards the hot
equilibrium πðTmaxÞ. The dynamic is defined by the
heating protocol TbðtÞ—bath temperature as a function
of time—limited by TbðtÞ ≤ Tmax. The trajectory in the
probability space generated by TbðtÞ is

pðtÞ ¼ T fe
R

t

0
RðTbðt0ÞÞdt0 gπðT0Þ; ð3Þ

where T is the time-ordering operator [20].
In what follows we consider protocols that during the

time interval t ∈ ½0; τ� are constrained by TbðtÞ ≤ Tmax, and
for t > τ the bath temperature is set to Tmax. These are
compared to the oven protocol, where TbðtÞ ¼ Tmax at
all times.
To gain some insight, it is beneficial to decompose pðtÞ

in terms of the right eigenvectors of RðTmaxÞ. Let vi ≡
viðTmaxÞ be a solution of

RðTmaxÞvi ¼ λivi; ð4Þ

where 0 ¼ λ1 > λ2 ≥ λ3 ≥ � � � ≥ λN are the eigenvalues of
RðTmaxÞ, which are real valued as RðTmaxÞ is detailed
balanced [21]. pðtÞ can be expressed as

pðtÞ ¼ πðTmaxÞ þ
XN

i¼2

aiðtÞvi: ð5Þ

For t > τ, the rate matrix is fixed since TbðtÞ ¼ Tmax, and
the dynamic is simplified to

aiðtÞ ¼ aiðτÞeλiðt−τÞ; ð6Þ

where aiðτÞ are determined by the protocol TbðtÞ. For the
oven protocol, the dynamic is even simpler,

aiðtÞ ¼ aið0Þeλit; ð7Þ

where aið0Þ≡ aT0

i is the coefficient of vi in πðT0Þ.
Following Eqs. (5) and (6), we suggest to minimize the

magnitudes of aiðτÞ by their order. The exponential time
dependence in Eq. (6) implies that at long enough time the
dominant component in Eq. (5) is the slowest one.
Consequently, a2ðtÞ dominates the distance to equilibrium,
regardless of the values of aiðτÞ for i > 2. Therefore, the
optimal protocol is the one that minimizes ja2ðτÞj. If there
are several protocols with a2ðτÞ ¼ 0, then among these we
should choose the protocol that minimizes ja3ðτÞj, and so
on. The optimal protocol thus sets 0 ¼ a2ðτÞ ¼ a3ðτÞ ¼
� � � ¼ amðτÞ for the largest m possible and minimizes
jamþ1ðτÞj. In the Supplemental Material (SM) [22] we
show a generalization of the above to nonlinear dynamics.

To demonstrate the construction of the optimal heating
protocol, we consider a simple example of a four-state
system. The temperature dependence of R is of Arrhenius
form,

RijðTbÞ ¼ Γe−ðBij−EjÞ=Tb ði ≠ jÞ; ð8Þ

where Γ is the rate constant, Bij ¼ Bji are the barriers
between states i and j, and Ei is the energy of state i.
Specifically, we use Ei ¼ ð0; 0.4; 1; 0.2Þ, and B12 ¼ 1.5,
B13 ¼ 1.1, B23 ¼ 10, B24 ¼ 0.01, B34 ¼ 1, and B14 ¼ ∞
as there is no direct transition between states 1 and 4. The
maximal temperature is set to Tmax ¼ 2, and the initial
temperature to T0 ¼ 1.
To find the optimal heating protocol, we follow the

above strategy—minimizing jaiðτÞj by their order. We first
minimize ja2ðτÞj, or equivalently ½a2ðτÞ�2, for τ ¼ 1, and
find many protocols with a2ðτÞ ¼ 0. Next, we minimize
½a3ðτÞ�2 keeping a2ðτÞ ¼ 0, and find many protocols where
both a2ðτÞ ¼ 0 and a3ðτÞ ¼ 0. However, it is impossible to
set a2ðτÞ ¼ a3ðτÞ ¼ a4ðτÞ ¼ 0, which corresponds to
pðτÞ ¼ πðTmaxÞ. Therefore, the optimal heating problem is

argmin
TbðtÞ≤Tmax;0<t≤τ

½a4ðτÞ�2; s:t: a2ðτÞ ¼ a3ðτÞ ¼ 0: ð9Þ

In the language of optimal control theory, this problem is
a quadratic end-point minimization, with the dynamic in
Eq. (1), linear end-point constraints, a bounded domain and
no path cost. Such minimization problems can be addressed
numerically using Pontryagin’s maximum principle [23].
Since there is no path cost, it can also be solved numerically
with methods as the sequential quadratic programming
[24]. We use both the free OpenOCL package [25] which
implements the Pontryagin’s maximum principle, and the
MATLAB built-in function fmincon which implement
sequential quadratic programming, to solve this optimiza-
tion problem, discretizing time into 400 points. The two
methods converge to the same optimal protocol TbðtÞ
plotted in Fig. 1(a). Surprisingly, it contains a precool-
ing stage.
As shown in Fig. 1(b), a2 at πðTÞ, denoted by aT2 , is

monotonic with temperature, meaning that the system does
not show any type of an IME. Nevertheless, heating can be
improved by precooling, as can be seen in Fig. 1(c). In this
figure, we compare the Kullback-Leibler (KL) divergence
[19,26] of pðtÞ to πðTmaxÞ in two protocols. In both the
system is initiated at πðT0Þ, but evolves under different
TbðtÞ: (i) orange dashed line—the oven protocol, where
TðtÞ ¼ Tmax at all times; (ii) green solid line—the optimal
protocol plotted in Fig. 1(a). As illustrated, the optimal
protocol achieves an exponentially faster relaxation
towards equilibrium.
Finding the optimal heating protocol in systems with a

high dimensional probability space is very tedious and
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generally impractical. However, in some cases it is possible
to improve the heating time exponentially by a short
precooling stage with a fixed cold temperature. Let us
demonstrate this through the following example: a
Brownian particle diffusing in a 1D potential with reflect-
ing boundary conditions, described by the Fokker-Planck
equation

_pðx; tÞ ¼ 1

γ
∂x½ð∂xVðxÞÞpðx; tÞ� þ

Tb

γ
∂2
xpðx; tÞ; ð10Þ

where pðx; tÞ≡ pðtÞ is the probability distribution of
finding the particle at position x ∈ ð0; 1Þ at a given time
t. For simplicity we assume that the damping coefficient is
given by γ ¼ 1.
For the potential VðxÞ in Fig. 2(a) and a system initiated

at πðT0Þ, we consider two protocols: (i) the oven protocol
(orange dashed line); (ii) a precooling protocol (green solid
line), where the system is first coupled to a Tcold bath for a
finite duration τ, and then to the Tmax bath. During the
precooling stage the distance to πðTmaxÞ increases while
a2ðtÞ decreases and vanishes at t ¼ τ. For t > τ, the system
relaxes exponentially faster towards its equilibrium, as can
be seen from the different slopes of the log distance in
Fig. 2(c). As in the previous example in Fig. 1, this system
does not show any type of an IME, since aT2 in Fig. 2(b) is
monotonic with temperature [27].

Under what conditions can precooling improve heating?
For systems that exhibit a strong inverse Mpemba effect
(SIME), a simple argument for the existence of such a
protocol can be given. The SIME is defined by the
existence of a temperature TM < Tmax at which aT2 changes
its sign [29]. If this effect exists in the system, then the oven
protocol is necessarily not optimal for any initial temper-
ature TM < T0 < Tmax. Precooling the system to temper-
ature Tcold < TM initiates a trajectory from πðT0Þ towards
πðTcoldÞ, where these two equilibrium points have a
different sign of aT2 . Therefore, the trajectory must cross
the a2 ¼ 0 manifold at finite time. The SIME thus assures
that a precooling protocol can be constructed to eliminate
a2 at a finite time and thereby improve the heating rate
exponentially. Moreover, the SIME was shown to be both
robust and to appear with a non-negligible probability [29],
and therefore the same holds for precooling protocols in the
presence of a SIME. An example that provides a physical
intuition for this case is given in the SM [22].
In systems that do not show the SIME, a precooling

protocol can still exist, although the previous discussion
does not apply. Without a SIME, aT2 has the same sign for
any T < Tmax. Therefore, in any slow enough protocol pðtÞ
does not cross the a2 ¼ 0 manifold. Therefore, in contrast
to systems that show the SIME where the existence of a
precooling protocol depends only on the location of
πðTcoldÞ≡ v1ðTcoldÞ, in any other system it must depend

(a)

(b)

(n
at

s)

(c)

FIG. 2. A Brownian particle in a potential. (a) The potential
VðxÞ. (b) The coefficient aT2 as a function of T. The red square is
at Tmax ¼ 1.5 where a2 ¼ 0, the black dot is at the initial
temperature T0 ¼ 1, and the blue triangle is at the cold temper-
ature Tcold ¼ 0.3. aT2 is monotonic, therefore the system does not
exhibit any type of IME. (c) The log-KL divergence to πðTmaxÞ ¼
πmax of the trajectories generated by the oven protocol (A, dashed
orange) and the precooling protocol (B, solid green), both
initiated at πðT0Þ. The precooling duration is τ ¼ 1.46, after
which the precooling protocol achieves exponentially faster
relaxation towards equilibrium.

(a)

(b)
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s)

(c)

FIG. 1. Four-state system. (a) The optimal heating protocol
TbðtÞ. The precooling stage takes place in 0 ≤ t≲ 0.2, where
TbðtÞ < T0 ¼ 1. For t ≳ 0.2 the bath temperature is fixed as
TbðtÞ ¼ Tmax ¼ 2. (b) The coefficient aT2 of the slowest direction
v2 in the equilibrium distribution πðTÞ. The red square is at
Tmax ¼ 2 where a2 ¼ 0 and the black dot is at the initial
temperature T0 ¼ 1. The coefficient a2 is monotonic, therefore
the system does not exhibit any type of IME. (c) The log distance
(KL divergence) to the equilibrium πðTmaxÞ ¼ πmax of the
trajectories generated by the oven protocol (A, dashed orange)
and the optimal protocol (B, solid green), both initiated at πðT0Þ.
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on some of the faster dynamics encoded in viðTcoldÞ for
i ≥ 2. As generically the eigenvectors and their coefficients
are continuous in the temperature, we expect the effect to
exist in some range around Tcold.
In the analysis so far, the Markovian operator and its

second eigenvector v2 played a crucial role. It is there-
fore rarely applicable to many-body systems, where the
number of microstates grows exponentially with the num-
ber of particles and thus finding v2 or πðT0Þ is a highly
nontrivial task. To overcome this limitation, we next extend
our strategy by considering a projection of the high-
dimensional probability space trajectories into a lower
dimension space.
Given a many-body system, we first choose two different

observables, x1 and x2, that can be easily calculated for any
microstate of the system. A probability distribution p can
then be projected into a 2D space by the p averaging
of x1 and x2 over all microstates, given by ðhx1ip; hx2ipÞ.
Whereas it is impractical to follow the time evolution of
pðtÞ in a system with a huge number of microstates, hx1ipðtÞ
and hx2ipðtÞ can be evaluated to a high precision using a
standard MC simulation. As discussed above, in the full
probability space all trajectories pðtÞ asymptotically
approach πðTmaxÞ from the slowest direction v2, except
for ones that are on the fast manifold. Therefore, their
projections ðhx1ipðtÞ; hx2ipðtÞÞ approach the mapped equi-
librium ðhx1iπðTmaxÞ; hx2iπðTmaxÞÞ from the projection of v2
direction [30]. In contrast, trajectories on the fast manifold
approach πðTmaxÞ from a different direction vi ði ≥ 3Þ, and
projected to trajectories that approach the mapped equi-
librium from the projection of the vi direction [31].
Let us demonstrate the projection method in a concrete

many-body system. We consider the 2D Ising model on a
L × L square lattice, with external magnetic field, anti-
ferromagnetic nearest neighbor interactions, and periodic
boundary conditions. We denote the state of the spin
located at the ith row and jth column by σij ∈ f−1; 1g.
The Hamiltonian of the system is given by

H ¼ −
J
4

X

hij;kli
σijσkl − h

X

ij

σij; ð11Þ

where J ¼ −1 is the antiferromagnet coupling constant and
h is the external magnetic field. The first summation is
restricted to nearest neighbor spins, and the second sum-
mation is over all spins in the system. The dynamic is
chosen to be the single spin flip Glauber dynamic [32]. The
rate of flipping a spin is given by

RflipðTbÞ ¼
1

1þ eΔE=Tb
; ð12Þ

where ΔE is the energy increment due to the flip.

As already mentioned, there is no hope to find v2
numerically, even for a moderate case of L ¼ 70, corre-
sponding to 24900 microstates. To project pðtÞ, we thus
choose two observables: the mean and staggered magneti-
zation, defined for a microstate by

M ¼ L−2
X

ij

σij; S ¼ L−2
�
�
�
�
X

ij

sðijÞσij
�
�
�
�; ð13Þ

where sðijÞ ¼ 1 (−1) for even (odd) value of iþ j,
specifying two sublattices, and the absolute value in S is
used since the two sublattices are symmetric due to periodic
boundary conditions.
Finding a precooling protocol in the 2D Ising model

described above with L ¼ 70 is demonstrated in Fig. 3.
The projected trajectories ðhMipðtÞ; hSipðtÞÞ were calculated
using 107 realizations of a MC simulation. To sample the
realizations from πðT0Þ, the state of every spin in each
realization was chosen randomly, and the Glauber dynamic
was applied to all the realizations for 106 MC steps, with
Tb ¼ T0 (for details, see SM [22]). After preparation,

FIG. 3. 2D Ising model with external magnetic field
h ¼ 1.0025. The black dot, red square, and blue triangle are
the mapped equilibrium points ðhMiπðTÞ; hSiπðTÞÞ at T0 ¼ 0.125,
Tmax ¼ 0.625, and Tcold ¼ 0.0125, respectively. The oven pro-
tocol trajectory (orange dashed line) is initiated at T0 and
approaches the Tmax equilibrium from the projection of v2
direction. The trajectory initiated at Tcold (gray dot-dashed line)
evolves under the oven protocol and approaches the same
equilibrium from an opposite direction. The precooling protocol
trajectory (green solid line), with a precooling duration of τ ¼
1850MC steps, approaches the Tmax equilibrium from a different
direction and thus from the fast manifold. The green dotted line is
the trajectory the system would have followed had it stayed
coupled to Tcold. Inset: the difference between the energy p-
averaging of a trajectory and equilibrium, plotted for the oven and
precooling protocols.
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the oven protocol, denoted by A, was applied and
ðhMipAðtÞ; hSipAðtÞÞwas measured. As Fig. 3 shows, another
trajectory (gray dot-dashed line), where the system is
prepared at Tb ¼ Tcold and evolves under the same proto-
col, approaches the same equilibrium point from the
opposite direction. Namely, one of these trajectories
approaches from the v2 direction and the other from
−v2. This implies that the sign of a2 at πðTcoldÞ is opposite
to that of πðT0Þ. If a trajectory approaches the equilibrium
point from a different direction than the previous two, it
must lie on the a2 ¼ 0 manifold, and thereby have an
exponentially faster relaxation towards the equilibrium.
The precooling protocol, denoted by B, was found by
choosing τ such that the corresponding trajectory
ðhMipBðtÞ; hSipBðtÞÞ approaches the equilibrium point from
a different direction.
To demonstrate that the precooling protocol is indeed

faster, we used the p-averaged energy difference to measure
the distance of a trajectory to equilibrium, as suggested in
[13]. This distance function captures the faster relaxation
rate of the precooling protocol, compared to the oven
protocol, as shown in the inset of Fig. 3.
We have demonstrated how heating processes in several

systems can be exponentially improved using a precooling
strategy. As we demonstrated, our method can be applied
even in many-body systems, and is expected to be relevant
to experiments as well.
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