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We study the estimation of the overlap between two unknown pure quantum states of a finite-
dimensional system, given M and N copies of each type. This is a fundamental primitive in quantum
information processing that is commonly accomplished from the outcomes of N swap tests, a joint
measurement on one copy of each typewhose outcome probability is a linear function of the squared overlap.
We show that a more precise estimate can be obtained by allowing for general collective measurements on all
copies. We derive the statistics of the optimal measurement and compute the optimal mean square error in the
asymptotic pointwise and finite Bayesian estimation settings. Besides, we consider two strategies relying on
the estimation of one or both states and show that, although they are suboptimal, they outperform the swap
test. In particular, the swap test is extremely inefficient for small values of the overlap, which become
exponentially more likely as the dimension increases. Finally, we show that the optimal measurement is less
invasive than the swap test and study the robustness to depolarizing noise for qubit states.
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Introduction.—The overlap between two unknown quan-
tum states is an archetypical instance of quantum relative
information [1–8], and the estimation of the overlap is a
basic primitive in quantum information processing, with
applications ranging from quantum fingerprinting [9–11],
entanglement estimation [12–15], and communication
without a shared reference frame [16–19] to quantum
machine learning [20–29]. Recently, with the advent of
quantum machine learning protocols [22–28], overlap
estimation (OVE) has attracted renewed interest as a
fundamental primitive, and its efficient implementation
and generalization on near-term quantum computers are
subjects of current research [20,21]. In most applications,
OVE is carried out through the swap test (SWT) [9,20,21]:
given two systems in the state jψijϕi, the probability of
projecting it onto its symmetric or antisymmetric part is
determined by the overlap between jψi and jϕi. By
repeating this measurement on several pairs of copies,
one can obtain a good estimate of this probability, and
hence of the overlap. It is then natural to ask whether, for
the same number of copies, one could reach a larger
accuracy via a collective strategy that extracts the relevant
information using a joint and less-destructive measurement.
In this Letter, we answer in the positive, evaluating the
ultimate precision attainable in the OVE of two pure
quantum states, given a number of copies of each and
assuming no prior knowledge about them.
The task we consider is as follows: given N and M ≥ N

copies of two unknown pure states jψi, jϕi of a d-
dimensional quantum system, we are requested to provide

an estimate of their (squared) overlap jhψ jϕij2 which is
fixed, but unknown to us. The task is carried out by a
machine that performs a measurement on the state jΨi ¼
jψi⊗N ⊗ jϕi⊗M ofM þ N qudits and produces an estimate
with maximum precision, as quantified by the mean square
error (MSE). Furthermore we consider the case of unla-
beled states, i.e., when the machine receives UσjΨi, with
Uσ being an unknown permutation of the qudits. Note that
in this case OVE constitutes in itself an instance of an
unsupervised quantum-classical learning problem, in a
setting similar to that in Ref. [30].
The measurements optimizing the average information

gain [16] and the average error [17,18] have been derived
for the case of qubits, with only numerical solutions [19]
for higher dimensions. Here we tackle OVE in full general-
ity, characterizing the optimal estimation within both local
(pointwise) and global (Bayesian) approaches. For local
estimation, we provide an asymptotically achievable lower
bound using the quantum Fisher information (QFI) [31,32],
whereas for Bayesian estimation [31,33] we provide an
exact solution, generalizing the results of Ref. [19]. We find
that the optimal local strategy is also Bayesian optimal
asymptotically and that it performs identically in the
labeled and unlabeled scenarios. We compare our results
with the SWT and with two local operations with classical
communication (LOCC) strategies based on estimating
either one or both of jψi and jϕi; see Fig. 1. Such strategies
are useful in distributed scenarios where copies of jψi and
jϕi are produced in different and distant laboratories. We
show that, in the limit of a large M þ N and jM − Nj
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constant, the optimal strategy displays a finite asymptotic
gap with respect to all of the others. Moreover, we show
that the optimal measurement is less invasive than the SWT
and robust against single-qubit noise.
Assessing the machine’s performance.—The states

jψi ¼ Uj0i and jϕi ¼ Vj0i are drawn uniformly at ran-
dom, i.e., with Haar-distributed U, V ∈ SUðdÞ. Upon
performing a measurement fEkg on jψi with outcome k,
the machine outputs an estimate cðkÞ of the overlap
c ¼ jhψ jϕij2, with squared error ½cðkÞ − c�2.
In the global approach, the machine’s performance is

quantified by averaging the squared error over all possible
states and outcomes:

v ¼
X
k

Z
dU dV½cðkÞ − c�2Tr½EkjΨihΨj�: ð1Þ

We refer to v as global MSE. Writing V ¼ UW and using
the Haar-measure invariance dV¼ dW and c ¼ jh0jWj0ij2,
the average mean square error can be written as v ¼P

k

R
dW½cðkÞ − c�2Tr½EkρðcÞ�, where we have defined

the effective state

ρðcÞ ¼
Z

dUU⊗ðNþMÞjΨ0ihΨ0jU†⊗ðNþMÞ; ð2Þ

where jΨ0i ¼ 1 ⊗ W⊗Mj0i⊗ðNþMÞ. In addition, we can
write the above integral over W as an integral over the
overlap such that

v ¼
X
k

Z
dcpðcÞ½cðkÞ − c�2Tr½EkρðcÞ�; ð3Þ

where the distribution over overlaps is given by [30,35]

pðcÞ¼
Z

dUδðc− jh0jUj0ij2Þ¼ ðd−1Þð1−cÞd−2: ð4Þ

From the above discussion, we see that the average over
both types of states, i.e., over U and V, is equivalent to an
average over overlaps with weight pðcÞ and over different
orientations, U⊗ðNþMÞ. This is a direct consequence of the
fact that if the states are completely unknown, then all pairs
of states with equal overlap are equally probable and are
related by a rigid unitary, jhψ jϕij2 ¼ jhψ 0jϕ0ij2, if and only
if there exists a U such that jψ 0i ¼ Ujψi and jϕ0i ¼ Ujϕi.
At variance with the global approach, where the overlap

is a random variable, in the local approach, the overlap is
considered to be fixed. We then assess the performance of
the machine by computing the average of the square error
over all states with fixed overlap c and over all outcomes:

vðcÞ ¼
X
k

½cðkÞ − c�2Tr½EkρðcÞ�; ð5Þ

also in terms of the average state for a fixed overlap ρðcÞ.
We refer to vðcÞ as local MSE. As shown in the
Supplemental Material (SM) [36], the integral in Eq. (2)
can be performed using SUðdÞ representation theory and
SUð2Þ Clebsch-Gordan coefficients, obtaining the block-
diagonal form

ρðcÞ ¼
XJmax

J¼Jmin

pðJjcÞ 1J
χJ

⊗ jσihσjJ; ð6Þ

with Jmin ¼ ðjM − NjÞ=2, Jmax ¼ ðM þ NÞ=2, and

pðJjcÞ¼ð2Jþ1ÞN!M!ð1−cÞMPð0;−2JminÞ
JþJmin

(ð1þcÞ=ð1−cÞ)
ðJmax−JÞ!ðJmaxþ1þJÞ! ;

ð7Þ

where Pðα;βÞ
n ðxÞ is the nth-degree Jacobi polynomial. In the

previous equations, for d ¼ 2, J is the familiar total-
angular-momentum label, and 1J ¼

P
J
M¼−J jJ;MihJ;Mj

is the projector on the subspace of total angular momentum
J, of dimension χJ ¼ 2J þ 1. In general, for d > 2, 1J are
projectors over the subspaces of dimension χJðdÞ hosting
irreducible representations (irreps) of SUðdÞ arising from
the tensor product of two completely symmetric represen-
tations ofM and N qudits; these irreps are still indexed by a
(half-)integer J ∈ ½Jmin; Jmax�. Finally, jσiJ is a state rep-
resenting the known labeling of the states, and it belongs to
the irrep space of the permutation group, also labeled with
J. Note that, in the unlabeled scenario, the average over
qudit permutations acts only on jσiJ for each J, depolariz-
ing it to a projector on the whole irrep space. Importantly,
note that all of the information about the overlap is

0/1H H

OPTIMAL SWAP TEST

ESTIMATE & PROJECT ESTIMATE & ESTIMATE

(a) (b)

(c) (d)

FIG. 1. Sketch of the OVE strategies studied in the Letter. (a)
Optimal measurement, e.g., by Schur transform (see Ref. [34] for
the circuit implementation). (b) Circuit for the SWT, to be
repeated N times. (c) Estimate jϕi and project jψi on the
estimated direction. (d) Estimate both jψi and jϕi and calculate
the overlap.
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contained in the J statistics pðJjcÞ, which is independent of
dimension and labeling. In particular, the optimal meas-
urement is given by the projectors ΠJ on the subspaces
labeled with J, and it can be implemented via weak Schur
sampling [34]. Indeed, for any positive operator valued
measure (POVM) fEkgk, we can get the same outcome
probability distribution if we use the POVM fΠJEkΠJgk;J
and then ignore the J label. When this POVM is applied to
ρðcÞ, the outcome probabilities are pk;J ≔ pðkjJÞpðJjcÞ.
The same outcome probabilities pk;J can be generated by
applying the POVM fΠJgJ directly followed by classical
postprocessing. The latter can only increase the variance of
the estimator, by convexity of the figure of merit:P

kpðkjJÞðck;J−cÞ2 ≥ ½PkpðkjJÞck;J−c�2, which follows
from the Cauchy-Schwartz inequality. Therefore fΠJgJ
is optimal for both local and global estimations, and
one can replace Tr½EJρðcÞ� with pðJjcÞ in Eqs. (1) and
(5), effectively reducing our problem to one of classical
estimation, i.e., optimizing the function cðJÞ.
Local estimation.—The classical Cramer-Rao bound

[37] places a lower bound on the MSE of all local
unbiased estimators cðJÞ as vðcÞ≥HðcÞ−1, where HðcÞ ¼P

J½∂cpðJjcÞ�2=pðJjcÞ is the Fisher information of the
measurement statistics. In the limit M þ N → ∞ and
M − N ≪ ðM þ NÞ ffiffiffi

c
p

, we can use an approximation of
the Jacobi polynomial given in Ref. [38] to obtain the
following asymptotically unbiased estimator and its asso-
ciated MSE:

clocop ðJÞ ¼
�

2J
M þ N

�
2

; vopðcÞ ¼
4cð1 − cÞ
M þ N

; ð8Þ

In the SM [36], we show that vopðcÞ coincides with
HðcÞ−1 to leading order in 1=ðM þ NÞ, and hence the
Cramer-Rao bound is achievable in this limit. If instead
M → ∞ and N is finite, it is clear that jϕi can be estimated
perfectly, and hence the optimal strategy is to project the
copies of jψi in this known direction, with result-
ing vopðcÞ ¼ ½cð1 − cÞ�=N.
Bayesian estimation.—The optimal classical

Bayesian (global) estimator is given [31] by cBayop ðJÞ ¼
½R dc cpðcÞpðJjcÞ�=½R dcpðcÞpðJjcÞ�. Using graphical

calculus techniques for the recoupling theory of
Clebsch-Gordan coefficients [39] as explained in the SM
[36], we obtain the following optimal global estimator and
corresponding MSE:

cBayop ðJÞ¼dþJþJ2þ½ðMþNÞ=2�− ½ðMþNÞ=2�2þMN
ðdþMÞðdþNÞ ;

ð9Þ

vop ¼
ðd − 1ÞðdþM þ NÞ

dðdþ 1ÞðdþMÞðdþ NÞ : ð10Þ

We pause to highlight the following facts: (i) when d is fixed
and the number of copies is large, the prior distribution of the
states is uninformative with respect to the information that
can be obtained by the actual measurement; indeed we can
see that when M þ N → ∞, M − N constant, cBayop ðJÞ≈
clocop ðJÞ, implying that the local optimal estimator is also a
good Bayesian estimator, and vice versa; (ii) contrary to the
local estimation results, the global MSE of Eq. (10) is exact
for allM,N and depends on d due to the prior, Eq. (4); (iii) in
particular, vop decays as d−2 if either M or N is kept finite,
whereas it decays only as d−1 when M, N ≫ 1.
1-LOCC strategies.—We now consider a family of

intermediate strategies that employ one-way LOCC (1-
LOCC) on jψi⊗N and jϕi⊗M. The estimate-and-project (EP)
strategy consists of estimating jϕi from its M copies, then
projecting each copy of jψi on this estimate and counting the
fraction of successful projections. When jϕi is known,
projecting jψi on jϕi is optimal [37]. However, EP is not
necessarily the optimal 1-LOCC strategy. The corresponding

POVM elements can be written as EðepÞ
V;k ¼ dV EðMÞ

V ⊗
V⊗NΠðNÞ

k V†⊗N , where EðMÞ
V ¼ χM=2ðdÞðVj0ih0jV†Þ⊗M is

the optimal covariant measurement to estimate jϕi
[40,41], and ΠðNÞ

k represents k successful projections of
the copies of jψi on the estimate of jϕi. The estimator is
clocep ðkÞ ¼ k=N. The estimate-and-estimate (EE) strategy
instead consists of estimating both jψi and jϕi separately,
then computing the overlap between the estimated states.
The corresponding POVM elements can be written as

TABLE I. Local MSE and global MSE attainable via the optimal, EP, and EE strategies in two asymptotic limits.
In all cases, the global MSEs coincide with the corresponding average local MSE values, apart from asymptotically
vanishing corrections.

Local est. vopðcÞ vepðcÞ veeðcÞ
M ¼ N → ∞ ½4cð1 − cÞ�=ðM þ NÞ ð3=2ÞvopðcÞ 2vopðcÞ
M → ∞ ½cð1 − cÞ�=N vopðcÞ 2vopðcÞ

Bayesian est. vop vep vee

M ¼ N → ∞ ½4ðd − 1Þ�=½dðdþ 1ÞðM þ NÞ� ð3=2Þvop 2vop
M → ∞ ðd − 1Þ=½dðdþ 1Þðdþ NÞ� vop ½ðdþ 2NÞ=ð2þ NÞ�vop
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EðeeÞ
V;W ¼ dV dWEðMÞ

V ⊗ EðNÞ
W , i.e., a product of two covariant

measurements to estimate jϕi and jψi. We take as local
estimator clocee ðV;WÞ ¼ jh0jV†Wj0ij2. In the SM [36], we
provide the exact results for local and Bayesian estimations
using EP and EE. Table I compares the performance of these
strategies to the optimal one in twoasymptotic limits.We find
that, for both local and Bayesian estimations, the EE strategy
is alwaysworse than the optimal by a factor of 2, whereas the
EP strategy attains a MSE equal to the optimal in the limit
M → ∞, N finite.
Performances comparison.—We now compare the strat-

egies discussed so far with the traditional SWT [9]. Note
that all of these strategies except the optimal one require
labeling of the states. The latter consists of projecting the
state jψi ⊗ jϕi onto its triplet or singlet components; hence
it coincides with the optimal measurement forM ¼ N ¼ 1.
As the SWTacts on couples of states, we restrict to the case
M ¼ N. The probability of a triplet projection pðcÞ ¼
ð1þ cÞ=2 and the ensuing statistics of k successful
projections out of N trials are given by the binomial
distribution. The optimal local MSE attainable by this test
is well known, vswðcÞ ¼ ð1 − c2Þ=N, while for the optimal
global MSE vsw one can derive an exact expression for each
value of k, then compute the sum numerically, as detailed in

the SM [36]. In the asymptotic limit ofM ¼ N ≫ d, a good
approximation is provided by averaging the optimal local
MSE, vsw≃

R
dcpðcÞvswðcÞ¼ ðdþ2Þðd−1Þ=½dðdþ1ÞN�,

which is ∼d times larger than vop.
In the same limit, we can compare the local MSE of all of

the strategies; see Fig. 2. First, we observe a gap between
the optimal strategy that attains the QFI and all of the other
strategies. This means that, even with a large number of
copies, the collective measurement on jψi⊗N ⊗ jϕi⊗M has
a clear advantage over a noncollective one. Second, we
observe that the relative error

ffiffiffiffiffiffiffiffiffi
vðcÞp

=c for small c scales as
1=c

ffiffiffiffi
N

p
for the SWTand as 1=

ffiffiffiffiffiffi
cN

p
for the other strategies,

implying a quadratic improvement in 1=
ffiffiffi
c

p
in the number

of copies needed to reach a fixed relative error, while the
optimal measurement is still computationally efficient (see
the next section). This is particularly relevant since, for
large d, small overlaps are exponentially more likely; see
Eq. (4). This phenomenon is also at the source of the so-
called barren plateau problem [42,43] for quantum varia-
tional circuits, and other types of strategies have been
proposed to address this issue [44–46].
We notice similar features for the global MSE, plotted in

Fig. 3 as a function of N for M fixed and increasing d
(inset). We observe that the SWT is comparable to EE for
M ∼ N and d ¼ 2, but with a small increase in dimension,
this feature disappears. Moreover, there is in general a gap
between the EP and EE strategies, with the former being
closer to the optimal one.
Gate complexity.—The advantage in the precision of the

optimal estimation comes with the trade-off that the optimal
measurement requires entangling operations over the whole
system of N þM qudits. The Schur transform [34,47,48] is
a way to perform the optimal measurement, and it requires
O(polyðN þM; log d; log 1=ϵÞ) qudit gates for precision ϵ.
The resulting algorithm is efficient but still unfeasible
without error correction. The SWT instead requires N
independent circuits of fixed depth, and it may still be
convenient for large overlaps or very noisy gates.
A midterm solution is to divide input data into R groups

of S copies of jϕi and jψi such that S is the largest integer

FIG. 2. Plot of the optimal local MSE scaling coefficient NvðcÞ
vs the true value of the overlap c, at leading order in M ¼ N, for
the strategies analyzed in the Letter.

(a) (b) (c)

FIG. 3. (a) Plot of the optimal global MSE vop vs the number of copies of one state N, for a fixed number of copies of the other
M ¼ 1000, in dimension d ¼ 2, for the optimal, EP, and EE strategies. (b) Plot of the optimal global MSE vop vs the dimension d, for a
fixed number of copies M ¼ N ¼ 1000 for all of the strategies studied. (c) Plot of the average postmeasurement fidelity with the initial
state FðcÞ vs the true value of the overlap c with a fixed and equal number of copies M ¼ N ¼ 100, for the optimal strategy and SWT.
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for which the given architecture can perform the optimal
measurement with high fidelity, repeat the measurement
R times, and do classical postprocessing. The performances
of these intermediate protocols are between SWTs and the
optimal measurement. See the SM [36] for a more detailed
discussion of these issues.
Measurement invasiveness.—Another relevant figure of

merit for applications is the fidelity between the postmea-
surement state and the initial one, averaged over the
measurement outcomes. Both the optimal measurement
and the SWT are projective measurements. We assume that
the postmeasurement states are given by the result of such
projections, and hence the average postmeasurement fidel-
ity can be written as

FðcÞ ¼
Z

dU
X
k

jhΨUjEkjΨUij2; ð11Þ

with fEk ≡ 1Jg for the optimal measurement and
fEk ¼ GSN

ð1S⊗k
2 ⊗ 1A⊗N−k

2 Þg for the SWT, where 1S=A2

are the projectors on the singlet and triplet components of
H⊗2

2 . Then Eq. (11) is simply given by

FopðcÞ¼
XJmax

J¼Jmin

pðJjcÞ2; FswðcÞ¼
�
1þc2

2

�
N

; ð12Þ

as shown in the SM [36]. In Fig. 3, we plot these two
quantities as a function of c, showing that the optimal
measurement is less invasive than the SWT, especially for
small overlap values.
Noise robustness.—Finally, we consider how the optimal

strategy changes when the states, which are expected
to be pure, are affected by depolarizing noise acting
independently on each qudit before reaching the measure-
ment stage. Note that if the noisy channel is of a different
kind, one can at least reach the optimal MSE for the
depolarizing channel by performing a twirling operation,
realizable by pre- and postprocessing with random unitaries
on each qudit plus classical forward communication. This
operation is

R
dUU†N ðUρU†ÞU ¼ ΔrðρÞ for some r,

where we have defined the depolarizing channel as
Δr ¼ rI þ ð1 − rÞð1=dÞTr, and I is the identity channel.
After this operation, the overall state of the system can now
be written as Δr0ðψÞ⊗N ⊗ Δr1ðϕÞ⊗M.
In the SM [36], we compute the optimal MSE in

this case, restricting to d ¼ 2 for simplicity. In the limit
M;N → ∞ with M=N finite, the global MSE at leading
order is vop;mix ¼ ð1=6Mr20Þ þ ð1=6Nr21Þ, which agrees
with the previously found limit of Eq. (10) for zero noise,
ri ¼ 1. Hence the net effect of white noise is to rescale the
MSE by a factor of r−2i for each state.
Conclusions.—In this Letter, we computed the ultimate

precision attainable when estimating the overlap of two
arbitrary pure quantum states, as a function of the dimen-
sion of their Hilbert space and their number of copies.

We showed that the commonly used SWT is highly
inefficient for small values of the overlap and also on
average over Haar-distributed random states. The optimal
strategy is a collective measurement on all of the copies and
can be implemented efficiently using the Schur transform,
although this remains experimentally challenging. A prac-
tical alternative is to do Schur sampling on subsets of the
dataset, followed by classical postprocessing. In addition,
we proposed two intuitive strategies that estimate separately
one or both states and showed that they also outperform the
SWT. Finally, we showed that the optimal measurement is
less invasive than the SWTand is robust to white noise. The
strategies we introduced provide several clear advantages
over the SWT, and they could become a standard tool for
various quantum technologies, while also providing
improvements in the run-time of quantum algorithms.
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