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Antiparallel spins are superior in orienteering to parallel spins. This intriguing phenomenon is tied to
entanglement associated with quantum measurements rather than quantum states. Using photonic systems,
we experimentally realize the optimal orienteering protocols based on parallel spins and antiparallel
spins, respectively. The optimal entangling measurements for decoding the direction information from
parallel spins and antiparallel spins are realized using photonic quantum walks, which is a useful idea that is
of wide interest in quantum information processing and foundational studies. Our experiments clearly
demonstrate the advantage of antiparallel spins over parallel spins in orienteering. In addition, entangling
measurements can extract more information than local measurements even if no entanglement is present in
the quantum states.
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Introduction.—Quantum information processing prom-
ises to realize many tasks, such as computation, commu-
nication, and metrology [1–3], much more efficiently than
the classical counterpart. The power of quantum informa-
tion processing is closely tied to quantum entanglement
[4,5], the characteristic feature of quantum mechanics.
Entanglement can manifest in both quantum states and
quantum measurements [6–11], and the former has been
extensively studied in the past thirty years. By contrast,
entanglement in quantum measurements is still not well
understood [12], although it is connected to a number of
intriguing phenomena, such as “nonlocality without entan-
glement” [13].
A classical task for which entangling measurements play

a central role is orienteering (direction encoding and
decoding) using parallel and antiparallel spins [6,7,14,15],
first recognized by Gisin and Popescu twenty years ago [7]
(see Fig. 1). Suppose Alice wants to communicate a random
space directionn to Bob and she can send only two spin-1=2
particles. A natural way to encode the direction is to polarize
the two spins along the same directionn, as characterized by
the ket jn;ni. After receiving the two spins, Bob can
perform some measurement and guess the direction based
on the measurement outcome. The performance of Bob is
characterized by the average fidelity of his guess and the

original spin state. Alternatively, Alice may send two spins
polarized along opposite directions, that is, jn;−ni.
In either way, there is no entanglement between the two

spins and, intuitively, one will not expect any advantage
of one strategy over the other. This conclusion indeed
holds if Bob’s measurement on the two spins requires only
local operations and classical communication (LOCC),
in which case the maximum fidelity Bob can achieve is
ð3þ ffiffiffi

2
p Þ=6 ≈ 0.7357 for both encoding methods [14].

However, the situation is different if Bob can perform
entangling measurements. Now, the maximum fidelity is
3=4 ¼ 0.75 for the parallel encoding and ð3þ ffiffiffi

3
p Þ=6 ≈

0.7887 for the antiparallel encoding [7]. This intriguing
phenomenon manifests the importance of entanglement
in quantum measurements instead of quantum states.
Although this canonical example is well known by now,
no convincing experimental demonstration is known to us
in the literature. Incidentally, in the experiment reported in
Ref. [16], the entanglement was mapped to the state
preparation process instead, which contradicts the spirit
of the original proposal and is thus hardly convincing for
demonstrating the power of entangling measurements.
Using photonic systems here we realize optimal orient-

eering with parallel spins and antiparallel spins. The
optimal protocol based on LOCC is also realized as a
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benchmark. To achieve this goal, we encode the two spins
into polarization and path degrees of freedom (d.o.f.) of a
photon, respectively. Then the optimal measurements are
realized using photonic quantum walks. Measurement
tomography shows that these measurements are realized
with high qualities. The optimal fidelities we achieved
agree very well with the theoretical predictions. These
results demonstrate convincingly that antiparallel encoding
is indeed better than parallel encoding for communicating
the direction. Also, entangling measurements are more
efficient than separable measurements for extracting the
direction information. Our work is expected to stimulate
more research on quantum entanglement in measurements,
which deserves much further studies.
Optimal measurements for two spins.—In the original

Letter [7], Gisin and Popescu considered the communica-
tion of a completely random direction. Simple analysis
shows that all the conclusions remain the same if the
direction n is chosen a priori on the vertices of a regular
octahedron with equal probability of 1=6. This simpler
setting is more appealing to demonstrate the distinction
between parallel encoding and antiparallel encoding.
Suppose Alice chooses the direction n ¼ ðx; y; zÞ with

x2 þ y2 þ z2 ¼ 1 at random (uniformly either from the unit
sphere or the vertices of the regular octahedron) and
encodes it into two parallel spins jn;ni, where jni is a
qubit ket with Bloch vector n and density matrix
ρ ¼ jnihnj ¼ ð1þ n · σÞ=2. Here σ is the vector composed
of the three Pauli matrices σx, σy, σz. If Bob can only access

LOCC, then the optimal protocol after receiving the two
spins can be realized as follows [14]. Bob first measures
one spin along some direction a and then measures the
other spin along an orthogonal direction b. Denote the
outcomes of the two measurements by �a and �b,
respectively, then the guess direction is the bisectrix of
the two vectors associated with the two outcomes. For a
given n, the mean fidelity achieved by this protocol is

1

4
½2þ

ffiffiffi
2

p
ðn · aÞ2 þ

ffiffiffi
2

p
ðn · bÞ2�: ð1Þ

The average fidelity over uniform distribution on the sphere
or on the vertices of the octahedron is about 0.7357, which
achieves the maximum under LOCC [7,14]. To be concrete,
Bob can measure the pair σx, σy on the two spins,
respectively; pairs σz, σx and σz, σy are equally good
(see Table S1 in the Supplemental Material [17]).
If Bob can access entangling measurements, then the

optimal protocol is realized by the projective measurement
onto the basis composed of the four states [18]

jΨk
ji ¼

ffiffiffi
3

p

2
jnj;nji þ

1

2
jΨ−i; j ¼ 1; 2; 3; 4; ð2Þ

where jΨ−i ¼ ð1= ffiffiffi
2

p Þðj01i–j10iÞ is the singlet, which is
maximally entangled, and jnji for j ¼ 1, 2, 3, 4 are qubit
states that form a symmetric informationally complete
positive operator-valued measure (SIC POVM), that is,
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FIG. 1. Schematic diagram and experimental setup for optimal orienteering with parallel and antiparallel spins. Direction encoding on
Alice’s side is implemented in the module of state preparation, which prepares the two (parallel or antiparallel) spins in path and
polarization degrees of freedom (d.o.f.), respectively. After receiving the two spins, Bob decodes the direction information using the
optimal entangling measurement realized via photonic quantum walks. Here a polarizing beam splitter (PBS) initializes the polarization
state in theH component, and beam displacers (BDs) realize the conditional translation operator T. Half wave plates (HWPs) and quarter
wave plates (QWPs) realize site-dependent coin operators Cðx; tÞ. Four single-photon-counting modules (SPCMs) E1 to E4 correspond
to the four outcomes of the entangling measurement. Note that the positions of E3 and E4 are switched in the case of antiparallel
decoding, as marked in red.
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jhnjjnkij2¼ð2δjkþ1Þ=3 [19,20]. Geometrically, the Bloch
vectors nj form a regular tetrahedron inside the Bloch
sphere. To make sure that the four states in Eq. (2) are
orthogonal, we can choose

jn1i ¼ j0i; jn2i ¼
iffiffiffi
3

p ðj0i þ
ffiffiffi
2

p
j1iÞ;

jn3i ¼
iffiffiffi
3

p ðj0i þ eð2π=3Þi
ffiffiffi
2

p
j1iÞ;

jn4i ¼
iffiffiffi
3

p ð−j0i þ eðπ=3Þi
ffiffiffi
2

p
j1iÞ: ð3Þ

The guess direction is nj if outcome j in Eq. (2) appears
upon the measurement. For a given n, the mean fidelity
achieved by this protocol is

1

24
ð18þ

ffiffiffi
2

p
x3 − 3

ffiffiffi
2

p
xy2 − 3x2z − 3y2zþ 2z3Þ: ð4Þ

The average of this fidelity over any distribution of n that is
symmetric under inversion is 0.75. In particular, the
average over uniform distribution on the sphere or on
the vertices of the octahedron is 0.75, which achieves the
maximum for parallel encoding [7,14].
Next, suppose Alice encodes the direction n into anti-

parallel spins jn;−ni. Now, the optimal protocol can be
realized by performing the projective measurement on the
basis

jΨ⊥
j i ¼

ffiffiffi
3

p þ 1

2
ffiffiffi
2

p jnj;−nji þ
ffiffiffi
3

p
− 1

2
ffiffiffi
2

p j−nj;nji; ð5Þ

where jnji are given in Eq. (3) and j − nji are chosen as
follows,

j − n1i ¼ j1i; j − n2i ¼
iffiffiffi
3

p ð
ffiffiffi
2

p
j0i − j1iÞ;

j − n3i ¼
iffiffiffi
3

p ðe−ð2π=3Þi
ffiffiffi
2

p
j0i − j1iÞ;

j − n4i ¼
iffiffiffi
3

p ðe−ðπ=3Þi
ffiffiffi
2

p
j0i þ j1iÞ: ð6Þ

The guess direction is nj if outcome j in Eq. (5) appears.
For a given n, the mean fidelity achieved is

1

12
ð6þ2

ffiffiffi
3

p
þ

ffiffiffi
2

p
x3−3

ffiffiffi
2

p
xy2−3x2z−3y2zþ2z3Þ: ð7Þ

The average over any inversion-symmetric distribution is
about 0.7887 [7,14], which is larger than the counterpart for
parallel encoding, though the fluctuation is larger.
Incidentally, the measurement defined in Eq. (5) was called
the elegant joint measurement by Gisin and plays an
important role in the study of N locality [12,21].

Realization of the optimal measurements via quantum
walks.—Quantum walks are a powerful tool in quantum
information processing, including quantum computation
and quantum simulation. Recently, quantum walks also
found important applications in implementing generalized
measurements [22–25]. Consider a quantum walk on a one-
dimensional chain, and the system is characterized by two
d.o.f. jx; ci, where x denotes the walker position and can
take any integer value, while c ¼ 0, 1 denotes the coin
state. The evolution in each step is determined by a unitary
transformation of the form UðtÞ ¼ TCðtÞ, where

T ¼
X

x

jxþ 1; 0ihx; 0j þ jx − 1; 1ihx; 1j ð8Þ

is the conditional translation operator, and CðtÞ ¼P
x jxihxj ⊗ Cðx; tÞ is determined by site-dependent coin

operators Cðx; tÞ. Any discrete POVM on a qubit can be
realized by choosing suitable coin operatorsCðx; tÞ and then
measuring the walker position after sufficiently many steps
[22]. In addition, quantum walks can be used to realize
POVMs on higher-dimensional systems [25], including
collective measurements on a two-qubit system [26].
Here we use quantumwalks to realize optimal entangling

measurements for decoding the spin direction from parallel
encoding and antiparallel encoding, as specified in Eqs. (2)
and (5). To realize these two-qubit projective measurements
using quantum walks, we take the coin qubit and the walker
in positions 1 and −1 as the two-qubit system of interest
and use other positions of the walker as an ancilla. In this
way, the two-qubit projective measurements in Eqs. (2) and
(5) can be realized with five-step photonic quantum walks
as shown in the module of entangling measurements in
Fig. 1. At each step, the state of the coin qubit is trans-
formed by the coin operator Cðx; tÞ depending on the
walker position. Upon the action of the translation operator,
then the position of the walker is updated based on the coin
state. After certain steps, measurement of the walker
position effectively realizes a POVM (including projective
measurements) on the two-qubit system composed of the
walker and coin. In particular, we can realize the optimal
entangling measurements in Eqs. (2) and (5) with five-step
quantum walks by designing the coin operators Cðx; tÞ
wisely (see the Supplemental Material [17]). The four
detectors E1 to E4 marked in the figure correspond to the

four projectors onto the four basis states jΨk
1i to jΨk

4i
tailored for parallel encoding and jΨ⊥

1 i to jΨ⊥
4 i tailored for

antiparallel encoding. This setup can also be used to realize
local projective measurements σxσy; σzσx, and σzσy, which
are optimal under LOCC.
Experimental setup.—The experimental setup for optical

orienteering via parallel and antiparallel encodings as well
as decodings with entangling measurements is illustrated in
Fig. 1. The setup is composed of two modules designed
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for state preparation of parallel (antiparallel) spins and
entangling measurements, respectively.
In the module of state preparation, Alice encodes the

desired direction n into the Bloch vectors of qubit 1 and
qubit 2 in the path and polarization d.o.f., i.e., the walker
qubit encoded in positions 1 and −1 and the coin qubit with
H and V polarizations. A 2-mm-long BBO crystal, cut for
the type-I phase-matched spontaneous parametric down-
conversion (SPDC) process, is pumped by a 40-mW V-
polarized beam at 404 nm. After the SPDC process, a pair
of photons with wavelength λ ¼ 808 nm are created in the
state of jHHi [27]. The two photons pass through two
interference filters with a bandwidth of 3 nm. The two-
photon coincidence counts are about 7000 per second. One
photon is detected by a single-photon-counting module
acting as a trigger. The other photon acts as a heralding
single-photon source and is prepared in jHi by a polarizing
beam splitter (PBS). The desired direction jni is encoded in
the Bloch vector of the photon by a half wave plate (HWP)
and a quarterwaveplate (QWP)with deviation anglesh1,q1.
To transform the polarization state into the path state, a beam
displacer (BD0) is used to displace theH component and V
component into two paths; then a HWPwith deviation angle
45° is placed in the V-component path to prepare the photon
in the state jn; Hi.
Next, Alice encodes the ket jni or j − ni into the

polarization d.o.f. (coin qubit) using a HWP and a QWP.
In this way, Alice can prepare the desired parallel spins
jn;ni or antiparallel spins jn;−ni, the first qubit of which
is encoded in the path d.o.f., while the second one in the
polarization d.o.f.
Then, the two-spin state is sent into the module of

entangling measurements on Bob’s side, which per-
forms the entangling measurements in Eqs. (2) or (5)
based on quantum walks; see Fig. S1 in the Supplemental
Material [17] for more details. To realize the conditional

translation operator T, we use interferometrically stable
BDs [28–31] to separate horizontal polarization (H) 4 mm
away from vertical polarization (V). Each coin operator is
realized by no more than three HWPs or QWPs. The
rotation angles are specified in the table within Fig. S1 in
the Supplemental Material [17]. According to the
measurement scheme and its outcome, Bob guesses a
direction ng by virtue of the dictionary in Table S1 in
the Supplemental Material [17]. To accurately characterize
the optimal entangling measurements as well as local
projective measurements that were actually realized, we
performed quantum measurement tomography [32] and
demonstrated that these measurements were experimen-
tally realized with very high fidelities (see Supplemental
Material [17]).
Optimal orienteering via parallel and antiparallel

spins.—By virtue of the optimal entangling measurements
realized using quantum walks, we can now demonstrate the
distinction between parallel spins and antiparallel spins for
orienteering.
First, we verify the fidelity formulas presented in Eqs. (4)

and (7). In the experiment, Alice draws a direction vector
on the xz plane, which has the form n ¼ ðsin θ; 0; cos θÞ
with 0 ≤ θ ≤ 2π (this information is hidden from Bob)
and applies parallel encoding jn;ni or antiparallel encod-
ing jn;−ni, where jni¼cosðθ=2Þj0iþsinðθ=2Þj1i and
j − ni ¼ − sinðθ=2Þj0i þ cosðθ=2Þj1i. After receiving the
two qubits that encode the direction information, Bob
performs the optimal entangling measurement (depending
on the encoding method of Alice) and guesses the direction
ng using the dictionary in Table S1 in the Supplemental
Material [17]. The fidelity of his guess is defined as
F ¼ ð1þ n · ngÞ=2, and the average fidelity over 50 000
runs for each strategy is shown in Fig. 2, which agrees very
well with the theoretical predication. Notably, the average
fidelity averaged over antipodal points θ and θ þ π is

F
id

el
ity

Parallel Exp.
Aver. Parallel Exp.

Antiparallel Exp.   
Aver. Antiparallel Exp.

LOCC(ZX) Exp.  
Aver. LOCC Exp.

LOCC(XY) Exp. 
LOCC(ZY) Exp. 

(a)                (b)

FIG. 2. Fidelities of transferring a class of directions ðsin θ; 0; cos θÞ based on parallel and antiparallel spins. (a) Performances of
optimal entangling measurements on parallel and antiparallel spins. (b) Performances of local projective measurements on parallel spins.
Each data point is the average over 50 000 runs. To manifest the direction-independent behavior, the fidelities averaged over directions θ
and θ þ π are also shown in plot (a); by contrast, the fidelities averaged over three local projective measurements are shown in plot (b).
The error bar denotes the standard deviation of 100 numerical simulations from Poisson statistics.
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almost independent of θ for both encoding methods as
predicted; in addition, the average fidelity for anti-
parallel encoding is clearly larger than that for parallel
encoding. As a benchmark, in the case of parallel enco-
ding, we also considered the scenario in which Bob
performs local projective measurements on the two qubits
separately.
Next, Alice draws one of the six directions�x;�y;�z at

random and apply parallel or antiparallel encoding. After
receiving the two qubits which encode the direction
information, Bob can perform one of the five measurement
schemes, three of which are optimal local projective
measurements, while the other two are optimal entangling
measurements tailored for parallel encoding and antipar-
allel encoding, respectively. Based on the measurement
outcome, Bob makes his guess ng, and the average
fidelity over 50 000 runs for each strategy is shown in
Table I. The experimental results closely match the theo-
retical maximums achievable by LOCC (0.7357), optimal
measurements for parallel encoding (0.75), and optimal
measurements for antiparallel encoding (0.7887), respec-
tively. In this way, our experiment clearly demonstrates that
antiparallel encoding can achieve better orienteering than
parallel encoding. Meanwhile, entangling measurements
are more powerful in extracting the direction information
than local measurements.
Summary.—Using photonic quantum walks, we exper-

imentally realized the optimal entangling measurements for
decoding the direction from parallel spins and antiparallel
spins, respectively. Our experiments clearly demonstrate
that antiparallel spins are superior to parallel spins in
orienteering. In addition, entangling measurements can
extract more direction information than local measure-
ments. Although it is difficult to realize practical orienteer-
ing using the current proposal, our work represents an
important step in exploring the power of entangling
measurements in quantum information processing as well
as foundational studies, and is thus expected to stimulate
more research on entangling measurements. In particular,
the optimal measurement on antiparallel spins realized in
our experiments is also of key interest in the study of N
locality [12,21].
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