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We consider conditions for the existence of boundary modes in non-Hermitian systems with edges of
arbitrary codimension. Through a universal formulation of formation criteria for boundary modes in terms
of local Green’s functions, we outline a generic perspective on the appearance of such modes and generate
corresponding dispersion relations. In the process, we explain the skin effect in both topological and
nontopological systems, exhaustively generalizing bulk-boundary correspondence to different types of
non-Hermitian gap conditions, a prominent distinguishing feature of such systems. Indeed, we expose a
direct relation between the presence of a point gap invariant and the appearance of skin modes when this
gap is trivialized by an edge. This correspondence is established via a doubled Green’s function, inspired by
doubled Hamiltonian methods used to classify Floquet and, more recently, non-Hermitian topological
phases. Our work constitutes a general tool, as well as a unifying perspective for this rapidly evolving field.
Indeed, as a concrete application we find that our method can expose novel non-Hermitian topological
regimes beyond the reach of previous methods.
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The absence of Hermiticity allows new symmetries and
promises novel topological phases [1–8]. Recent experi-
ments [9–13] observe generalizations of concepts from
Hermitian systems [5,8], but depend on fine-tuned gain and
loss symmetries, e.g., PT symmetry [10]. Some aspects
appear counterintuitive, such as the pileup of bulk states at
system edges, the non-Hermitian skin effect [6,14–16],
which suggests an absence of bulk-boundary correspond-
ences [5,14,17,18]—boundary modes reflecting topologi-
cal degeneracy in the bulk spectrum [19–26] that lay the
foundation for the classification and observation of topo-
logical phases [27,28].
We introduce a general framework, resting on universal

Green’s function classification methods [27], to formulate an
exhaustive description of boundary modes and their con-
nection to bulk topology. Through this physical observable,
we generalize notions of bulk-boundary correspondence,
explain non-Hermitian skin effects, and uncover novel
topological regimes. Particularly, an otherwise Hermitian
system is tuned from one nontrivial topological phase to
another by adding generic non-Hermiticity, suggesting
unexplored, experimentally accessible, properties of systems
under open conditions.
Non-Hermitian band topology.—While Hermitian sym-

metry protected topological phases (SPTs) are classified
with respect to a real band gap [19–26], non-Hermitian
systems have complex spectra. Accordingly, there are band
gaps and point gaps, marked orange in Fig. 1. Band gaps
are either a line gap [Fig. 1(a)] or the closed region between
two bands [Fig. 1(c)]. They generate two disjoint simply
connected regions of the complex plane just as a Hermitian
band gap. Point gaps are the region enclosed by a single

band in the complex plane, Fig. 1(b) [1,3]. Topology is
defined with respect to a band center [stars in Figs. 1(b)
and 1(c)], generating a simply connected punctured plane,
whose topology is different from that of two disjoint regions.
A point gap invariant can be visualized as a net system
vorticity [5]. This geometric interpretation will guide the
development of our formalism below. In fact, it implies bulk
topological invariants must change as line gaps close into
point gaps through crossings of isolated bands [Fig. 1(b)]
[1,3,5]. This is visualized by unwrapping the punctured
complex plane into an open strip (Fig. 1) via a holomorphic
map, detailed in the Supplemental Material I [29].
Diagnosing edge-localized bound states.—All formation

criteria for edge modes can be obtained from in-gap zeros
of the Green’s function projected to relevant edges [27,28].
The idea is that the Green’s function of a system with an on-
site potential V is given by

Gðω;kÞ ¼ ½1 −G0ðω;kÞV�−1G0ðω;kÞ; ð1Þ

where indices on the possible matrix structure for V are
suppressed and G0 is the impurity free Green’s function.
Projecting to an edge, poles correspond to

det ½G0ðω;kk; r⊥ ¼ 0ÞV − 1� ¼ 0; ð2Þ

where kk and r⊥ refer to the momenta and perpendicular
coordinates along edges of arbitrary codimension [27].
By virtue of bulk-boundary correspondence, Hermitian

topological phases must have in-gap solutions of Eq. (2) for
any impurity strength approaching an edge, jVj → ∞ [27].
Therefore, zeros of the restricted in-gap Green’s function,
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G0ðϵ;kk; r⊥ ¼ 0Þ, correspond to topological edge-localized
states, see Supplemental Material [29], Secs. II and III. And,
locations of the Green’s function zeros ω�ðkkÞ define
dispersion relations of edge modes. Furthermore, counting
Green’s function zeros between bands determines band
topological invariants [60], seeSupplementalMaterial III [29].
Doubled Green’s function.—We cannot directly apply

the above formalism to a non-Hermitian system, Ĥ0; see
Supplemental Material III [29]. We, therefore, define a
Hermitian doubled Hamiltonian [1,3,61],

Ĥ0 ¼
�

0 Ĥ0

Ĥ†
0 0

�
: ð3Þ

It maps bands of Ĥ0, respectively Ĥ†
0, to positive, res-

pectively negative, energies E, Fig. 1, with radius jEj.
Accordingly, subblock topology is encoded by doubled
topology with respect to a doubled gap [1,3].
We define a corresponding doubled Green’s function,

GðωÞ ¼ G0ðωÞ
1 − V̂G0ðωÞ

; with G0ðωÞ ¼
1

ω − Ĥ0

; ð4Þ

where V̂ is the doubled impurity potential, Vðr⊥ ¼ 0Þ, and
Ĥ ¼ Ĥ0 þ V̂ . Being Hermitian, the topological edge states
correspond to the zeros of the projected doubled Green’s
function, as before (Supplemental Material IV.2 [29]).

Crucially, we extract the physical meaning of these edge
modes by relating doubled Green’s function zeros to those
of the single Green’s function. We parametrize the single
Green’s functions by ω ∈ R; θ ∈ ½0; 2π�,

G0ðω; θÞ≡ ðωeiθ − Ĥ0Þ−1; ð5Þ

and define its complex conjugate, G†
0ðω;−θÞ, parametrized

by −θ ∈ ½−2π; 0�, S.I. IV.2 [29]. This is subtle because G0

is only defined for ω ∈ R, and the zeros of G0; G
†
0 are,

in general, complex. However, noting that ω2 ¼
ðωeiθÞðωe−iθÞ for any θ ∈ ½0; 2π�, we may choose θ as a
function of ω, defining a path in the complex plane. We can
then factor G0 (Sec. IV.2 of Ref. [29]) as

G0 ¼
�

0 G†
0

G0 0

��
1 − ω

�
0 G†

0

G0 0

��
−1 eiθ

e−iθ −1

��−1
:

ð6Þ

And, we take θðωÞ such that our path intersects the zeros,
ω�; θ� of G0. The doubled band gap is thus defined by the
radial distance ω between bands as shown in Fig. 1, and
“in-gap” zeros of the doubled Hermitian Green’s function,
G0 correspond to in-gap zeros of the single non-Hermitian
Green’s functions, G0.
Non-Hermitian boundarymodes.—Projecting the Green’s

functions to an edge, we come to amain result, the exhaustive

(a) (b) (c)

FIG. 1. Non-Hermitian gap topology. Top rows illustrate the holomorphic mapping of non-Hermitian bands (see Supplemental
Material [29]) on the punctured complex plane (C − f0g) to a strip, parametrized (r, θ) (green/purple arrows indicate gaps). Systems are
then duplicated along the right column of each panel, Ĥ† → −r and Ĥ → þr, where we note that generically the shape is altered. Bands
are collapsed to real line in bottom rows, and we plot in-gap doubled Green’s functions across different band gaps (orange markers) with
blue-red smears representing Bloch bands. Curves crossing the gap depict the topological example (Fig. 2) of in-gap doubled Green’s
function G eigenvalues, see Eq. (4). A line gap (a) protects zeros ofG crossing from red (blue) to blue (red) bands, while bands in (c) may
have both point gap invariants (crossing zero in purple gap) and band gap invariants (red to blue).
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determination of boundary modes in non-Hermitian
systems, Table I.
First, in the presence of a line gap [Fig. 1(a)], if the

projected doubled Green’s function, G0ðω; kk; r⊥ ¼ 0Þ, has
in-gap zeros, we distinguish two topological cases. The
projected single Green’s function, G0ðω; kk; r⊥ ¼ 0Þ, either
has zeros on (I) or has zeros off (II) the real axis. Case I
corresponds to traditional bulk-boundary correspondence—
a topologically nontrivial phase hosts edge modes reflecting
the bulk topological degeneracy. Case II we refer to as the
anomalous skin effect—a topologically nontrivial phase
hosts edge modes with complex conjugate energies, a
growing and a decayingmode. Since line gap band topology
is defined by the doubled Hamiltonian, cases I and II are not
topologically distinct and generalize the notion of bulk-
boundary correspondence.
Second, consider a single band point gap [Fig. 1(b)].

Edges cut the band and project along corresponding
momenta, with two possible outcomes. The point gap
is either preserved, or the bands are “flattened”—made
contractible to a point—and the point gap topology
trivialized. By contrast, the doubled Green’s function
topology is defined over the (real) doubled gap before
projection [Fig. 1(b)] in both cases. If the point gap
survives, a nontrivial topology exhibits corresponding
boundary modes by Eq. (6), case I, II. Alternatively, if
bands are flattened, the projected spectrum is gapless and
the single projected Green’s function is singular. Hence, a
bulk point gap invariant does not have corresponding
topological edge modes. Instead, we observe a trivial
skin effect (case III)—topologically trivial localization of
bulk modes at the edge. Heuristically, if an edge destroys
the entire bulk topology, it must carry all bulk topological
information and hence localize all bulk modes, see also
Sec. V. 1 of Ref. [29].
Third, consider a topologically trivial line gap topology,

an absence of in-gap zeros for the doubled Green’s
function. Bands in the complex plane generically form
closed loops and thus, also have point gaps, e.g., band
centers in Fig. 1(a). The point gap topology is always trivial
with respect to the line gap. However, if the point gap

invariant is intrinsically nontrivial and an edge flattens the
bands, a trivial skin effect (III) is generated as before. Skin
modes are not topological and have energies away from
the line gap, lying in the bands, but can be detected by
computing the double Green’s function of a single band
with respect to its center. Since a band may have both a
point gap and line gap invariant, the trivial skin effect may
coexist with topological edge-localized modes (I,II).
Finally, consider a band gap such as in Fig. 1(c). Here the

doubled Green’s function is directly sensitive to both the
band and point gap topology, and the zero crossings are, by
definition, separated in energy [Fig. 1(c)]. If the point gap is
trivialized, we observe a trivial skin effect, otherwise, we
see topological edge modes corresponding to the point
gap topology. On top of these modes, the topological edge
modes corresponding to the band gap topology can be
detected via the same correspondence in Eq. (6), and Table I
holds, as above.
The role of symmetry.—Since cases I and II are not

topologically distinct, Eq. (6) provides a purely topological
generalization of bulk-boundary correspondence protected
by the existence of a gap, see Supplemental Material IV.2
[29]. And, traditional bulk-boundary correspondence is a
symmetry protected case of the anomalous skin effect [18].
In fact, the spectrum can be continuously rotated in Fig. 1(c),
tuning between cases I and II. Furthermore, while a point
gap does not protect bulk-boundary correspondence, bulk
vs edge symmetries determine the presence of trivial skin
modes. This implies a direct classification of non-Hermitian
SPTs by their edge modes.
Distinguishing topological invariants.—Characterizing

system edge modes, the formalism makes it possible to
probe non-Hermitian band topology directly. For example,
considerZ andZ2 line gap topological invariants. The edge
dispersion parity under time-reversal symmetry (TRS)
immediately distinguishes them. This distinction is critical
in non-Hermitian systems, where topological invariants
depend on gap conditions. In fact, in the example below, we
identify a purely non-Hermitian topological phase transi-
tion, where line gap separated bands are tuned to a point
gap, without altering Hamiltonian symmetries, Fig. 3.
Examples.—We illustrate our universal framework in

the context of the non-Hermitian Chern insulator. Our
formalism also works for edges of arbitrary codimensions,
see also Ref. [27], and for the well-studied non-Hermitian
Su-Schriefffer-Heeger (SSH) model, in which we retrieve
and clarify the transitions reported in previous works;
see Supplemental Material VII.1 [29]. We consider the
Hamiltonian

H ¼ ξðkÞσ þ ihσ; ð7Þ

where σ¼ðσx;σy;σzÞ, h¼ðhx;hy;hzÞ indicates the strength
of the non-Hermitian field, and ξðkÞ¼ðcoskxþcosky−m;
−sinkx;sinkyÞ. We use the methods in Ref. [27] to

TABLE I. Non-Hermitian boundary modes. Correspondences
of in-gap single vs doubled Green’s function zeros (sGF vs dGF)
by Eq. (6), see text. Doubled Green’s functions defined with
respect to specified gap condition (yes or no indicates presence or
absence of zeros). Cases I, II exhibit topological edge modes,
those in case III are not topological. Case IV is topologically
equivalent to the Hermitian gapless phase.

Case sGF dGF Gap Manifestation

I R Yes Any Traditional bulk boundary
II C − R Yes Any Anomalous skin effect
III Singular Yes Point Trivial skin effect
IV N/A No Point Gapless Hermitian
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compute the single and doubled Green’s functions zeros
for this model, see Sec. VI.1 of Ref. [29].
In general, the dispersion relation can be read off from the

Green’s function zeros. Here, projecting the Hamiltonian to
the edge x̂ ¼ 0, reduces it to the non-Hermitian SSH model,
ξ ¼ ½m − cosðkyÞ; 0; sinðkyÞ�. Hence, the edge dispersion is
simply given by �½sinðkyÞ þ ihz� (Supplemental Material
VI.1 [29]) and is real for hz ¼ 0 by a combination of
transposition and chiral symmetry [2,14], see Supplemental
Material VII [29]. Therefore, we observe a generalized bulk-
boundary correspondence, case I for hz ¼ 0 and case II for
hz ≠ 0, see Fig. 2.
We compute the Chern number via Green’s function

zeros, see Supplemental Material VI. 3 [29]. If the line gap
is well defined, counting single Green’s function zeros

suffices; two (no) zeros between bands imply C1 ¼ �1 ð0Þ,
see Fig. 3. The dispersion is odd under TRS [Fig. 2(b)],
consistent with a Z invariant. And, the topological tran-
sition between phases is marked by a gapless region, where,
as seen by Ref. [14], the Bloch Chern number is not
defined, m� � jhj (with m� ¼ 2 marking the Hermitian
topological transition). The bands are “inseparable” [5] in
the complex plane. This regime is characterized by a point
gap invariant.
We examine the topology (vorticity) of the single

hybridized band via the doubled Green’s function [see
Fig. 1(b)]. Applying the same zero counting argument as
above, we see a new uniquely non-Hermitian transition,
Fig. 3. For hy ¼ hz ¼ 0, the Hermitian m� ¼ 2 phase
transition is slightly modified. However, when hy ≠ 0 or

(a) (b)

FIG. 2. Non-Hermitian Chern insulator boundary modes. Formalism applied to non-Hermitian Chern insulator, characterizing
boundary modes. (a) Top (bottom) row corresponds to single (doubled) Green’s function. System exhibits topological boundary modes:
Case I, left column, e.g., m ¼ 0.4; ky ¼ 0, hx ¼ hy ¼ 0.1, hz ¼ 0, and case II, right column, e.g., m ¼ 0.4; ky ¼ 0, hx ¼ hy ¼ 0,
hz ¼ 0.1. (red and blue indicate eigenvalue branches) (b) Edge state dispersion (hz ¼ 0; m ¼ 0.6, edge along the ŷ axis). For every
in-plane momentum kk, each ky above, we solve for boundary mode energy, defining a dispersion relation.

FIG. 3. Non-Hermitian Chern insulator phase diagram.—Phases of non-Hermitian Chern insulator. Nonzero components of non-
Hermitian field h and mass m� ¼ 2 −m are indicated in figure panels. Transition between 4 and 2 zeros signals line to point gap
transition, topological invariants labeled, see Sec. VI. 2 [29]. Components of h chosen to be anisotropic. Shown are representative cases,
i.e., hx, hy is the same as hx, hz (see others in Supplemental Material VI. 3 [29]).
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hz ≠ 0, we see two zeros appear instead of four. We also
notice that the doubled dispersion relation in this regime
becomes time-reversal symmetric, indicating the bands are
indexed by a Z2 invariant instead of a Z invariant, see
Supplemental Material VI.2 [29].
This transition is thoroughly understood via all relevant

symmetries in Supplemental Material VI.2 [29]. We focus
on the case of generic h, which has a Z line gap invariant
and a Z2 point gap invariant. As we increase jhj, the line
gap [Fig. 1(a)] closes and forms a point gap [Fig. 1(b)].
While existing methods were unable to provide a direct
computation of the topological invariant in this regime [14],
our formalism, counting zeros, is sensitive to these tran-
sitions, see Fig. 3. In fact, comparing our classification
when only hy ≠ 0 in the point gap regime to previous work
on the non-Hermitian skin effect [2,14], we find trivial skin
modes emerge for the same conditions as predicted by the
edge-induced trivialization of point gap topology.
Discussion and conclusion.—We presented a universal

framework to determine boundary modes in non-Hermitian
systems with two major outcomes, see Table I. The first is
a generalization of bulk-boundary correspondence to non-
Hermitian systems in the presence of a gap. We distinguish
two types of topological edge modes, those obeying
traditional bulk-boundary correspondence (I) and the
anomalous skin effect (II) and demonstrate case I to be
a symmetry constraint on the spectrum. This is accom-
plished via a complete characterization of topological edge
modes and their dispersion relations, allowing us to
distinguish different topological bulk invariants.
Moreover, the framework detects a uniquely non-

Hermitian phase transition under the closing of a line gap
[Fig. 1(a)] into a point gap [Fig. 1(b)]. As presented in
Table I, nontrivial point gap topology does not guarantee
bulk-boundary correspondence, but the skin effect directly
stems from its presence and subsequent trivialization due to
an edge (case III). And, we detect topological edge modes
reflecting a bulk point gap in the latter case (I,II). Thus, our
framework makes novel non-Hermitian phase transitions
physically accessible and suggests the extended SPT clas-
sification [1,3] is relevant beyond fine-tuning. We illustrated
this by computing the non-Hermitian Chern insulator phase
diagram, Fig. 3, for a gapless parameter regime previously
inaccessible [14]. Finally, we remark that our universal
formulation in terms of Green’s functions allows for the
incorporation of interactions in a natural manner, analo-
gously to the Hermitian counterparts [62], making our
framework also valuable for this active line of research.

The authors specially thank Jong Yeon Lee for his
suggestion to inspect doubled Hamiltonian boundary
modes and helpful discussions on the physical signifi-
cance of edge modes in the presence of a point gap.
We also thank Hengyun Zhou for insights on the classi-
fication scheme in Ref. [1]. We cordially thank Ashvin
Vishwanath, Joaquin Rodriguez Nieva, and Ching Hua

Lee for valuable discussions. A. J. K. was supported by
the Swiss National Science Foundation, Grant
No. P2ELP2_175278. R.-J. S. appreciatively acknowl-
edges funding via Ashvin Vishwanath.

D. S. B. and R.-J. S. developed the framework, per-
formed calculations, and wrote the manuscript. A. J. K.
contributed to the initial numerics and figures.

[1] H. Zhou and J. Y. Lee, Phys. Rev. B 99, 235112 (2019).
[2] K. Kawabata, K. Shiozaki, and M. Ueda, Phys. Rev. B 98,

165148 (2018).
[3] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys.

Rev. X 9, 041015 (2019).
[4] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F.

Nori, Phys. Rev. Lett. 118, 040401 (2017).
[5] H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402

(2018).
[6] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
[7] K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Phys. Rev.

B 84, 205128 (2011).
[8] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S.

Higashikawa, and M. Ueda, Phys. Rev. X 8, 031079 (2018).
[9] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.

Musslimani, S. Rotter, and D. N. Christodoulides, Nat.
Phys. 14, 11 (2018).

[10] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M.
Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N.
Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).

[11] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192
(2010).

[12] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S.
Nolte, M. S. Rudner, M. Segev, and A. Szameit, Phys. Rev.
Lett. 115, 040402 (2015).

[13] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu,
J. D. Joannopoulos, M. Soljačić, and B. Zhen, Science 359,
1009 (2018).

[14] S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802
(2018).

[15] V. M. Martinez Alvarez, J. E. Barrios Vargas, M. Berdakin,
and L. E. F. Foa Torres, Eur. Phys. J. Spec. Top. 227, 1295
(2018).

[16] C. H. Lee and R. Thomale, Phys. Rev. B 99, 201103 (2019).
[17] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J.

Bergholtz, Phys. Rev. Lett. 121, 026808 (2018).
[18] L. Jin and Z. Song, Phys. Rev. B 99, 081103(R) (2019).
[19] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[20] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
[21] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, Nat.

Phys. 9, 98 (2013).
[22] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J.

Slager, Phys. Rev. X 7, 041069 (2017).
[23] H. C. Po, A. Vishwanath, and H. Watanabe, Nat. Commun.

8, 50 (2017).
[24] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang,

C. Felser, M. I. Aroyo, and B. A. Bernevig, Nature (London)
547, 298 (2017).

[25] K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014).

PHYSICAL REVIEW LETTERS 124, 056802 (2020)

056802-5

https://doi.org/10.1103/PhysRevB.99.235112
https://doi.org/10.1103/PhysRevB.98.165148
https://doi.org/10.1103/PhysRevB.98.165148
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevB.84.205128
https://doi.org/10.1103/PhysRevB.84.205128
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1038/nphys4323
https://doi.org/10.1038/nphys4323
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevB.99.081103
https://doi.org/10.1063/1.3149495
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphys2513
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1103/PhysRevB.90.165114


[26] J. Höller and A. Alexandradinata, Phys. Rev. B 98, 024310
(2018).

[27] R.-J. Slager, L. Rademaker, J. Zaanen, and L. Balents, Phys.
Rev. B 92, 085126 (2015).

[28] J.-W. Rhim, J. H. Bardarson, and R.-J. Slager, Phys. Rev. B
97, 115143 (2018).

[29] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.124.056802. In this
Supplemental Material the presented framework is further
discussed and illustrated with a variety of models. This
relates our work to earlier specific observations and general
topological notions, connecting to Refs. [30–59].

[30] Z. Wang and S.-C. Zhang, Phys. Rev. X 2, 031008 (2012).
[31] T. Fukui, T. Fujiwara, and Y. Hatsugai, J. Phys. Soc. Jpn. 77,

123705 (2008).
[32] R. M. Kaufmann, D. Li, and B. Wehefritz-Kaufmann, Rev.

Math. Phys. 28, 1630003 (2016),
[33] K. Kawabata, S. Higashikawa, Z. Gong, Y. Ashida, and M.

Ueda, Nat. Commun. 10, 297 (2019).
[34] H.-G. Zirnstein, G. Refael, and B. Rosenow, arXiv:1901

.11241.
[35] A.M. Essin and V. Gurarie, Phys. Rev. B 84, 125132 (2011).
[36] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[37] A. Mesaros, R.-J. Slager, J. Zaanen, and V. Juričić, Nucl.

Phys. B867, 977 (2013).
[38] S. Ryu, A. P. Schnyder, A. Furusaki, and A.W. Ludwig,

New J. Phys. 12, 065010 (2010).
[39] R.-J. Slager, V. Juričić, and B. Roy, Phys. Rev. B 96, 201401

(R) (2017).
[40] R.-J. Slager, V. Juričić, V. Lahtinen, and J. Zaanen, Phys.

Rev. B 93, 245406 (2016).
[41] L. Herviou, J. H. Bardarson, and N. Regnault, Phys. Rev. A

99, 052118 (2019).
[42] Y. Xiong, J. Phys. Commun. 2, 035043 (2018).

[43] J. Carlström, M. Stalhammar, J. C. Budich, and E. J.
Bergholtz, Phys. Rev. B 99, 161115(R) (2019).

[44] C. H. Lee, G. Li, Y. Liu, T. Tai, R. Thomale, and X. Zhang,
arXiv:1812.02011.

[45] A. Mostafazadeh, J. Math. Phys. (N.Y.) 43, 205 (2002).
[46] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243

(1998).
[47] J. Feinberg and A. Zee, Phys. Rev. E 59, 6433 (1999).
[48] F. K. Kunst andV. Dwivedi, Phys. Rev. B 99, 245116 (2019).
[49] V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F.

Foa Torres, Phys. Rev. B 97, 121401(R) (2018).
[50] D. Porras and S. Fernández-Lorenzo, Phys. Rev. Lett. 122,

143901 (2019).
[51] Y. Chen and H. Zhai, Phys. Rev. B 98, 245130 (2018).
[52] M. R. Hirsbrunner, T. M. Philip, and M. J. Gilbert, Phys.

Rev. B 100, 081104 (2019).
[53] V. Juričić, A. Mesaros, R.-J. Slager, and J. Zaanen, Phys.

Rev. Lett. 108, 106403 (2012).
[54] A. Bouhon, A. M. Black-Schaffer, and R.-J. Slager, Phys.

Rev. B 100, 195135 (2019).
[55] R.-J. Slager, J. Phys. Chem. Solids 128, 24 (2019).
[56] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, Phys.

Rev. B 90, 241403(R) (2014).
[57] A. J. Heeger, S. Kivelson, J. R. Schrieffer, andW. P. Su, Rev.

Mod. Phys. 60, 781 (1988).
[58] S. Lieu, Phys. Rev. B 97, 045106 (2018).
[59] C. Yin, H. Jiang, L. Li, R. Lü, and S. Chen, Phys. Rev. A 97,

052115 (2018).
[60] B. A. Bernevig and T. L. Hughes, Topological Insulators

and Topological Superconductors (Princeton University
Press, Princeton, 2013).

[61] R. Roy and F. Harper, Phys. Rev. B 96, 155118 (2017).
[62] S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys.

Rev. Lett. 100, 156401 (2008).

PHYSICAL REVIEW LETTERS 124, 056802 (2020)

056802-6

https://doi.org/10.1103/PhysRevB.98.024310
https://doi.org/10.1103/PhysRevB.98.024310
https://doi.org/10.1103/PhysRevB.92.085126
https://doi.org/10.1103/PhysRevB.92.085126
https://doi.org/10.1103/PhysRevB.97.115143
https://doi.org/10.1103/PhysRevB.97.115143
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.056802
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.056802
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.056802
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.056802
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.056802
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.056802
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevX.2.031008
https://doi.org/10.1143/JPSJ.77.123705
https://doi.org/10.1143/JPSJ.77.123705
https://doi.org/10.1142/S0129055X1630003X
https://doi.org/10.1142/S0129055X1630003X
https://doi.org/10.1038/s41467-018-08254-y
https://arXiv.org/abs/1901.11241
https://arXiv.org/abs/1901.11241
https://doi.org/10.1103/PhysRevB.84.125132
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1016/j.nuclphysb.2012.10.022
https://doi.org/10.1016/j.nuclphysb.2012.10.022
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevB.96.201401
https://doi.org/10.1103/PhysRevB.96.201401
https://doi.org/10.1103/PhysRevB.93.245406
https://doi.org/10.1103/PhysRevB.93.245406
https://doi.org/10.1103/PhysRevA.99.052118
https://doi.org/10.1103/PhysRevA.99.052118
https://doi.org/10.1088/2399-6528/aab64a
https://doi.org/10.1103/PhysRevB.99.161115
https://arXiv.org/abs/1812.02011
https://doi.org/10.1063/1.1418246
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevE.59.6433
https://doi.org/10.1103/PhysRevB.99.245116
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevLett.122.143901
https://doi.org/10.1103/PhysRevLett.122.143901
https://doi.org/10.1103/PhysRevB.98.245130
https://doi.org/10.1103/PhysRevB.100.081104
https://doi.org/10.1103/PhysRevB.100.081104
https://doi.org/10.1103/PhysRevLett.108.106403
https://doi.org/10.1103/PhysRevLett.108.106403
https://doi.org/10.1103/PhysRevB.100.195135
https://doi.org/10.1103/PhysRevB.100.195135
https://doi.org/10.1016/j.jpcs.2018.01.023
https://doi.org/10.1103/PhysRevB.90.241403
https://doi.org/10.1103/PhysRevB.90.241403
https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevB.96.155118
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401

