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Inverse problems are encountered in many domains of physics, with analytic continuation of the
imaginary Green’s function into the real frequency domain being a particularly important example.
However, the analytic continuation problem is ill defined and currently no analytic transformation for
solving it is known. We present a general framework for building an artificial neural network (ANN) that
solves this task with a supervised learning approach. Application of the ANN approach to quantum
Monte Carlo calculations and simulated Green’s function data demonstrates its high accuracy. By
comparing with the commonly used maximum entropy approach, we show that our method can reach the
same level of accuracy for low-noise input data, while performing significantly better when the noise
strength increases. The computational cost of the proposed neural network approach is reduced by almost
three orders of magnitude compared to the maximum entropy method.
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Numerical simulations are playing an extensive role in a
growing number of scientific disciplines. Most commonly,
numerical simulations approximate a process or a field on a
discretized map, taking as input an equation describing the
model as well as initial and boundary conditions. Problems
falling under this definition are known as direct or forward
problems. However, in a number of situations it is required
to reconstruct an approximation of the input data or the
model that generated it given the observable data. Such
problem definitions are known as inverse problems and are
mostly ill posed [1,2]. One particularly important example
is the Fredholm integral equation of the first kind, which
takes the following form:

gðtÞ ¼ k∘f ≔
Z

b

a
kðt; sÞfðsÞds; ð1Þ

where gðtÞ is the available quantity, fðsÞ is the quantity
of interest and kðt; sÞ is the kernel. Formally speaking, one
is interested in operators k∘ that are ill conditioned or
degenerated. Therefore, the formal inversion f ¼ k−1∘g is
not a stable operation. Noise affecting the data may lead to
arbitrarily large errors in the solutions.
This work focuses on two particularly important exam-

ples of the analytic continuation problem in quantum
physics, which take the same form as Eq. (1). First, we
will consider a prototypical problem of quantum harmonic
oscillator linearly coupled to a bath, with the quantity of
interest being the power spectrum IðωÞ related to the
imaginary-time correlation function cðτÞ by a two-sided
Laplace kernel

cðτÞ ¼
Z

∞

−∞
e−ωðτ−

β
2
ÞIðωÞdω: ð2Þ

Then, we will focus on the reconstruction of the single-
particle spectral density function AðωÞ from the single-
particle fermionic Green’s function GðτÞ. These quantities
are related through the following relation:

GðτÞ ¼ −
Z

e−ωτ

1þ e−ℏωβ
AðωÞdω: ð3Þ

There exist several techniques for performing the ana-
lytic continuation (see Refs. [3–6]) that regularize the
problem by making use of prior knowledge and build an
algorithm that converges towards a pseudosolution [7].
Among these methods, the so-called maximum entropy
(MaxEnt) approach is the most commonly used. In this
method, prior knowledge is added by specifying a default
distribution mðωÞ that corresponds to the expected results
in the absence of data. The algorithm iteratively searches
for a distribution fðsÞ that maximizes the entropy with
respect to mðωÞ, but at the same time generates, using
Eq. (3), a function gðtÞ close to the data at disposal. In other
words, starting with a distribution fi, one computes the
standard mean squared deviation

χ2½fi� ¼
X
m;n

ðgiðτmÞ − gðτnÞÞ2
ffiffiffiffiffiffiffiffi
C−1
mn

q
; ð4Þ

and the entropy
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S½fi�¼
X
k

Δω
�
fiðωkÞ−mðωkÞ−fiðωkÞ ln

fiðωkÞ
mðωkÞ

�
; ð5Þ

where C is the correlation matrix of the available data g.
Standard optimization procedures allow computing the
distribution f̃ that maximizes

Q½f� ¼ αS½f� − χ2½f�
2

; ð6Þ

where α is a parameter that weights the relative importance
between the entropy and the error terms. There exist several
methods for fixing α, which often yield different results
when applied in practice.
The use of statistical methods for solving Fredholm

integral equations has emerged recently. These methods
include the regularization of the problem and the accel-
eration of existing methods through dimensionality reduc-
tion of the Green’s functions [8,9]. Dahm and Keller
pointed out that a similar context of the Fredholm inverse
integral equation of the second kind maps onto a reinforce-
ment learning framework [10]. More recently, several
works have shown that a machine learning approach is
suitable for solving inverse problems [11–13]. The main
idea of these data-driven approaches is to distill the prior
knowledge into simulated training datasets allowing a
higher flexibility in the regularization of the dataset
compared to the MaxEnt method. Arsenault et al. [13]
illustrated the utility of this approach for the fermionic
spectral density function [Eq. (3)]. This work considered a
database of spectral functions that resemble experimental
data and calculated their corresponding Green’s functions.
A kernel ridge regression performed on these data yielded
results comparable to those obtained using MaxEnt.
In this Letter, we use a supervised learning approach for

solving a physically more relevant scenario with known
Hamiltonian and the data of interest obtained from quantum
Monte Carlo (QMC) simulations. We use artificial neural
networks (ANNs) as a convenient framework. The univer-
sal approximation theorem ensures that ANNs can approxi-
mate any kind of continuous functions under mild
assumptions [14]. Furthermore, availability of powerful
libraries allows for an efficient implementation of different
ANN architectures that can take advantage of data struc-
tures, thus making ANNs a very versatile tool. We start by
briefly describing how we generate the training dataset
based on the physical parameters of the problem. We then
present general training steps that ensure that the model has
sufficient representative capacity and does not overfit the
training data. The results obtained using the ANN and
MaxEnt approaches applied to the QMC data are com-
pared. Finally, we underline the versatility of our approach
and its remarkable robustness against noisy input data by
applying it to the fermionic kernel of Eq. (3) and comparing
our results with a popular implementation of MaxEnt.

To test our approach, we choose to study a system that
has an analytical solution, yet proved to be difficult to solve
usingMaxEnt. We consider the time-correlation function of
the position operator for a harmonic oscillator linearly
coupled to an ideal environment. The Hamiltonian takes the
following form:

Ĥ ¼ p̂2

2m
þ V̂ðx̂Þ þ

X
α

�
p̂2
α

2m
þ 1

2
mαωα

2x̂2α − x̂cαx̂α

�
; ð7Þ

where greek subscripts denote the bath variables, and
Vðx̂Þ¼ 1

2
mω0

2x̂2 is a harmonic potential of frequency ω0.
The imaginary-time correlation function cðτÞ ¼ hx̂ðτÞx̂ð0Þi
can be computed within finite statistical error using QMC
simulations, while the quantity of interest is the power
spectrum IðωÞ related to cðτÞ through Eq. (2). Following
the work of Straub et al. [15], we consider a bath with
spectral density function

JBðωÞ ¼
1

π

Z
∞

0

dt cos ðωtÞξðtÞ; ð8Þ

where ξðtÞ is the classical friction kernel. For simulations of
a fluid of Lennard-Jones particles, it takes the following
form [16]

ξðtÞ ¼ ξ0fe−α1ðftÞ2 ½1þ a1ðftÞ4� þ a2ðftÞ4e−α2ðftÞ2g: ð9Þ

This system has an analytic solution which relates Eq. (9) to
the power spectrum [17], providing an elegant way to
generate physically relevant training data. A rich variety of
spectra was generated from uniform distributions of the
friction kernel parameters [26], examples of which, as well
as their corresponding imaginary-time correlation func-
tions, are shown in Figs. 1(a) and 1(b).
A simple approach to using machine learning for solving

the inverse problem would be to take fcðτiÞg as the input,
and fAðωiÞg as the output of our model. However, working
in high-dimensional spaces leads to numerous problems
commonly referred to as the curse of dimensionality. In
absence of simplifying assumptions, the amount of data
necessary to approximate a function to a given accuracy
grows exponentially with the number of dimensions. This
is due to the fact that for a given amount of data, the
parameter space becomes more sparse when the dimen-
sionality increases, which is also reflected in the empty
space phenomenon term. Therefore, we will present a more
compact representation of the input data to facilitate the
learning process of the model. The simplest and most
intuitive method of dimensionality reduction is the princi-
pal components analysis (PCA) [27]. The PCA relies on
finding a linear transformation that defines a new orthogo-
nal basis, whose components are aligned with the directions
where the data displays the maximum variance. The
fraction of variance covered by each principal component,
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the so-called explained variance ratio (EVR), provides a
quantitativeway of choosing the number of dimensions that
need to be retained. The EVR of the training dataset shown
in Fig. 1(c) decays exponentially fast with the component
index, thus allowing to keep only the first three components
with a loss of about 10−6 EVR. Figure 1(d) shows the data
projected on the first two components. The apparent
structure underlines the limits of PCA, which can only
suppress linear correlations between components.Nonlinear
methods such as t-SNE can be employed to further disen-
tangle the data.
There exists no universal way to build a neural network,

but prior knowledge of the problem can help designing it.
In this Letter, we consider architectures ofm fully connected
feed-forward layers of k units followed by one of 1024 units.
The lack of structure in the three-dimensional input data
suggests that the use of more complex architectures is not
relevant. Batch normalizations between the layers and
rectifier linear units (ReLU), respectively, help the learning
process and allow the model to find a non-linear relation
between the input and the output. A final softmax output
layer ensures the output to have the properties of a
probability distribution. An example of an architecture with
m ¼ 3 and k ¼ 8 is shown in Fig. 2(a). The input data
consist of the first three principal components of the
correlation function, while the output dimension is 1024.
The training procedure was performed using the Adam

optimizer [28], early stopping [29], and the mean absolute
error (MAE) as the loss function

MAE ¼ 1

N

XN
i¼1

jIðωiÞ − ÎðωiÞj; ð10Þ

where IðωiÞ and ÎðωiÞ are, respectively, the spectral density
function present in the dataset and the one predicted by the
model, both of them evaluated at ωi. This training method
efficiently avoids overfitting issues. Performance of differ-
ent architectures is assessed by averaging the results over
ten instances after their training. The validation MAE
values at the end of the training phase are shown in
Fig. 2(b) for a fixed number of hidden layers (m ¼ 4)
at different k and number of training data entries N.
Figure 2(c) keeps k ¼ 256 and N ¼ 100 000 constant
and compares the results for different numbers of layers.
As expected, increasing the number of parameters
decreases the final validation MAE, until it reaches a
plateau, whose value drops by adding data. We stopped
training at m ¼ 4, k ¼ 256, and N ¼ 100 000, achieving
sufficient performance of this architecture.
We can now test our approach by returning to the initial

problem. We computed the imaginary time correlation
function cðτÞ using QMC simulations. We set the param-
eters of the friction kernel [Eq. (9)] to ξ0 ¼ 225, a1 ¼
1.486 × 105, a2 ¼ 285, α1 ¼ 903, α2 ¼ 75.0, and f ¼ 0.2,
and the bare oscillator frequency ω0 ¼ 20. This system is
known to be difficult to solve using MaxEnt due to its long
relaxation time [30]. The imaginary time function ĉðτÞ was
sampled on 64 slices τi ∈ ½0; β�, with β ¼ 0.25. This
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FIG. 2. (a) Example of architecture with m ¼ 3 and k ¼ 8. The
last layers have 1024 nodes. (b) Validation MAE at the end of the
training phase for different training set sizes N and units per layer
k. (c) Same quantity for different number of hidden layers
(mþ 1) for N ¼ 100 000 and k ¼ 256.
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FIG. 1. (a) Examples of imaginary-time correlation functions
present in the validation set and (b) their corresponding spectral
density functions. (c) Illustration of the rapid decrease of the
explained variance ratio (EVR) for the first five principal compo-
nents. (d) Projection of data on the first two principal components.
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relatively large sampling induces errors due to the Trotter
approximation, which makes it even harder to obtain the
power spectrum [30]. Different slices were computed on
different simulations to ensure their independence. The
correlation function was computed from a total of 6 × 106

simulations divided into 300 blocks. Further details can be
found in the Supplemental Material [17]. Before using
ANN to obtain the imaginary-time correlation function, we
must express the data on the same basis as the one used for
the training. The QMC data were therefore transformed
using the same PCA as the training data, interpolating the
missing imaginary-time slices using cubic splines.
Figure 3 shows that the essential features, the low-

frequency decay and the peak at around ω ¼ 20, are well

reproduced by our ANN approach even for themodel trained
on 2000 data entries only. The model trained on the entire
dataset of 100 000 entries shows almost perfect agreement
with the analytic solution. On the other hand,MaxEnt fails to
provide accurate results.Wewould like topoint out, however,
that better results using MaxEnt can be obtained by comput-
ing the correlation function cðτÞ on a larger number of
points [30].
To complete the validation of the proposed ANN model,

we benchmark it using the methodology applied in the
machine learning work of Arsenault et al. [13]. We seek to
recover the electron single-particle spectral density in the
real frequency domain AðωÞ from the fermionic Green’s
function GðτÞ in imaginary time domain, with the two
quantities related through Eq. (3). The model spectral
densities AðωÞ are defined as a sum of uncorrelated
Gaussian distributions with one peak constrained to be
located close to the origin [31]. Following previous works,
we perform the dimensionality reduction by working in
the orthogonal basis of Legendre polynomials and keeping
first 64 coefficients [9,32]. Since the quantum Monte Carlo
data are noisy by nature, we also generated test sets in
which the Green’s functions were corrupted by errors as
G̃ðτiÞ ¼ GðτiÞ þ ϵi, where ϵi are independent random
variables normally distributed with standard deviation η.
Details of the dataset generation and training can be found
in the Supplemental Material [17].
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FIG. 3. Analytic continuation of the QMC data performed
using MaxEnt and the proposed ANN approach for different
training set sizes N.
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Figure 4(a) provides a qualitative comparison of the
results of our ANN model applied to unseen data and the
MaxEnt implementation of Levy et al. [33] for three
different noise levels, η ¼ 10−5, 10−3, and 10−1. The level
of noise was provided as parameter for MaxEnt and used to
select the network for ANN, as explained above. In these
examples, both methods predict AðωÞ accurately for the
lowest level of noise. However, at η ¼ 10−3 MaxEnt tends
to suppress peaks in the predicted spectral function ÂðωÞ,
while in the case of our ANN model this tendency is much
less pronounced. At the highest level of noise η ¼ 10−1,
our ANN model is able to reproduce most peaks,
whereas MaxEnt flattens the distribution entirely
(Fig. 4). Figure 4(b) displays the MAE distributions of
both the ANN and MaxEnt methods. It is clear that the
mean MAE of the ANN model remains lower than the one
of MaxEnt at all noise levels [Fig. 4(c)] and it shows a
smaller spread. ANN outperfoms MaxEnt and behaves
even better with increasing the noise level.
As a final note, we would like to underline the computa-

tional efficiency of our approach compared to MaxEnt.
ANN allows a direct mapping between Green’s functions
and the spectral densities. In that sense, we can define it as a
direct way of solving the problem. In contrast, MaxEnt is
an iterative method which requires generating trial func-
tions until convergence is reached. In our computational
setup, the time required for converting 500 ½GðτÞ; AðωÞ�
pairs with η ¼ 10−5 is 5 seconds in the case of ANN
(including the time to load libraries), while MaxEnt would
need 51 minutes using the same setup.
To summarize, thanks to the stability of the forward

problem, we have built an artificial neural network that
solves the analytic continuation problem with an accuracy
similar to that of the commonly used maximum entropy
approach but at a fraction of computational cost. We have
also shown that our ANN model performs better for QMC
data or noisy inputs. Adding more data and increasing the
number of parameters can further improve the accuracy,
although training must be performed with care to avoid
overfitting issues. The great representative capacity of deep
neural networks suggests that other inverse problem can be
solved in a similar way, provided that a dataset can be
constructed. Such datasets may be derived using available
experimental results combined with data augmentation
techniques. The resulting models have the advantage of
directly benefiting from prior knowledge and no longer
relying on parameter tuning.
Trained models resulting from our work can be obtained

from public repository [34].
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