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Accurate calculation of spectral line broadening is important for many hot, dense plasma applications.
However, calculated line widths have significantly underestimated measured widths for Δn ¼ 0 lines of
Li-like ions, which is known as the isolated-line problem. In this Letter, scrutinization of the line-width
derivation reveals that the commonly used expression neglects a potentially important contribution from
electron-capture. Line-width calculations including this process are performed with two independent
codes, both of which removed the discrepancies at temperatures below 10 eV. The revised calculations also
suggest the remaining discrepancy scales more strongly with electron temperature than the atomic number
as was previously suggested.
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Spectral lines observed from plasmas are shifted and
broadened due to the atomic wave functions being perturbed
by nearby electrons and ions. While accurate understanding
of line broadening is crucial for a number of applications,
including plasma diagnostics [1–4] and opacity calculations
[5–9], persistent disagreement between measurements and
models indicates that line-broadening theory is not suffi-
ciently accurate [10,11].
One of these outstanding disagreements is known as the

isolated-line problem [12–14]. This problem centers
around the 1s22p-1s22s and 1s23p-1s23s transitions of
Li-like ions (B III, C IV, N V, O VI, F VII, and Ne VIII), where
lines are broadened mostly due to atomic-states being
perturbed by plasma electrons (via electron-impact colli-
sions) [14]. In the 1990s, multiple high-fidelity experiments
[15–19] were performed to measure the widths of these
transitions with independent temperature and density diag-
nostics. The experiments found that calculations [20–22]
underpredicted the measured widths. The discrepancy is
most severe for the B III 1s22p-1s22s and the Ne VIII

1s23p-1s23s lines, where the calculated widths are half of
the measured values.
Since this discrepancy is observed over multiple plat-

forms, the experiments are thought to be correct. The
Glenzer [15–17] experiment was a gas-liner pinch discharge
and the Belgrade experiment [19] a linear arc discharge.
Both experiments used a light element (hydrogen and
helium, respectively) as the driver gas, and the elements
of interest are tracers. Both sets of experiments used optical
Thomson scattering to derive electron densities and temper-
atures. Thus, the model-data line-width discrepancies

consistently observed from these experiments raised a
question on the line-broadening model accuracy.
The observed discrepancy is particularly puzzling

because the mechanism for electron broadening was
considered well understood and the key calculations were
experimentally validated. Baranger [23] derived that line
widths can be directly calculated from electron-collision
cross sections. However, as shown in Griem et al. [12], line
widths calculated with cross sections from state-of-the-art
scattering models [24] (which have been experimentally
verified [25]) disagree with measured line widths.
Interestingly, semiclassical calculations somehow showed
better agreement, but it was found to be coincidence due to
improper treatment of penetrating collisions [24,26]. This
long-standing isolated line problem has been a challenge
for line-broadening community and raised an important
question: why do validated collision calculations fail to
reproduce the widths of these lines?
There have been several attempts to explain this discrep-

ancy since the 1990s, but a resolution has yet to be found.
Griem et al. [12] speculated that unnoticed turbulence in the
plasma may be adding extra broadening to the lines. This
hypothesis was refuted by Alexiou et al. [27], showing that
the data contained no signs of turbulence. Iglesias [28]
suggested that the discrepancy could be resolved if the
atomic populations were out of local thermodynamic equi-
librium, but Griem and Ralchenko [29] showed that the
populations are very close to equilibrium. Further studies at
the Spectral Line Shapes in Plasmas Code-Comparison
Workshops found no new insight into the problem
[14,30,31]. Interestingly, Duan et al. [32] showed excellent
agreement for the B III 1s22p-1s22s line width at the one of
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the workshops. However, they could not provide physical
reasoning for better agreement and ended their paper by
emphasizing the necessity of further scrutiny.
In this Letter, we provide a resolution and physical

explanation for the B III 1s22p-1s22s discrepancy as well as
a partial resolution for the 1s23p − 1s23s discrepancies.
We revisit Baranger’s [23] derivation for the line width
formula, reiterating that line-width calculations are incom-
plete unless all possible electron-impact collision channels
are included. Generally, only elastic and inelastic collisions
have been included in the broadening calculations, but
electron-capture (hereafter EC) processes have never been
included. By performing complete line-width calculations
with the EC processes included, the widths of all Li-like
ions increased. Some of the widths increased significantly;
for example, the B III 1s22p-1s22s width now agrees with
experiment (a result obtained by two independent codes).
The increase in the widths of the 1s23p-1s23s lines resolves
the discrepancies below 10 eV. Above 10 eV, there are still
discrepancies which trend strongly with temperature and
are not dependent on the atomic species.
For an isolated line, the line shape, IðωÞ, is well

approximated as a Lorentzian,

IðωÞ ∝ 1

ðω − ωa
0 −HRÞ2 þH2

I
ð1Þ

where ω is the photon frequency; ωa
0 is the unperturbed

atomic-transition frequency; and HR, HI are the shift and
width, respectively, due to electron perturbations. The
width is approximated using T matrices (or collision
amplitudes) as follows (atomic units used throughout) [23],

HI ¼ neλ3T

Z
∞

0

d3ke−β
1
2
k2
�
ImhukjTjuki−ImhlkjT�jlki

þ2π

Z
∞

0

d3k0hukjTjuk0ihlk0jT�jlkiδðEk−Ek0 Þ
�
;

ð2Þ

where ne is the electron density, λT is the thermal de Broglie
wavelength, β is the inverse temperature, u and l denote the
upper and lower states (respectively) of the atom, and k and
k0 are states of the perturbing plasma electron. The three
terms in the square brackets are considered to be the
broadening of the upper state, lower state, and the inter-
ference between them [20].
The upper- and lower-state broadening terms can be

alternatively defined as a function of the total collision
cross section using the optical theorem [20,23], i.e., (shown
for the lower broadening term):

ImhlkjTjlki ¼ −
jkj
2

X
l0
σ̂l→l0 ðkÞ; ð3Þ

where σ̂l→l0 ðkÞ is the total cross section from state l to l0 with
initial perturber state k. Here, Baranger provided physical
insight into the electron broadening problem: the ensemble of
random electron perturbations on line widths is expressed as
the probability-weighted average [i.e., λ3T expð−βk2=2Þ] over
all possible electron-collision cross sections between unper-
turbed states. Since the integration of Eq. (2) results in an
electron collision rate, this expression suggests (or indicates)
that electron broadening can be interpreted as a natural
broadening induced by electron-collision processes [33].
While this insight is ingenious, Eq. (3) is slightly

misleading because it obscures the necessity of electron-
capture processes. To make this point clearer, we share an
abridged version of the derivation below. To connect the
lower-broadening term to the cross sections, the following
property of the T matrix is used:

ImhlkjTjlki ¼ −πhlkjT†δðE −H0ÞTjlki; ð4Þ
where E and H0 are the energy and noninteracting
Hamiltonian of the atom plus perturber system. To evaluate
the product of operators, we use the resolution of identity,

1 ¼
XZ

l0k0
jl0k0ihl0k0j; ð5Þ

so that

ImhlkjTjlki ¼ −π
XZ

l0k0
hlkjT†jl0k0ihl0k0jTjlki

× δðElk − El0k0 Þ: ð6Þ
Since

R
k jhlkjTjl0k0ij2 is proportional to a cross section

[34,35], one can rewrite Eq. (6) as a function of cross
sections.
However, we have to be cautious when converting Eq. (6)

to Eq. (3). It is imperative to note that the identity resolution,
Eq. (5), is satisfied only when the summation goes over all
possible states, i.e., including both bound and free (or
ionized) states for the atomic state l0 and for the perturbing
electron state k0. In other words, one must include the
following processes in the summation: collisional excitation
or de-excitation [Figs. 1(a) and 1(b) where l0 ¼ bound,
k0 ¼ free], collisional ionization [Fig. 1(c) where

(a)

(c) (d)

(b)

FIG. 1. Cartoon of possible binary-collision channels: (a) ex-
citation, (b) de-excitation, (c) ionization, and (d) recombination
or electron capture.
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l0 ¼ ionized, k0 ¼ free], and electron capture [Fig. 1(d)
where l0 ¼ bound, k0 ¼ bound]. The importance of colli-
sional ionization was investigated and found to be negligible
[36]; however, electron-capture has not been investigated.

To illustrate how the electron-capture process differs
from the other processes, we pick out the contribution for
the case of l ¼ 1s22s and l0 ¼ 1s22p from Eq. (6), which
is this:

XZ
k0
jh2skjTj2pk0ij2δðE2sk − E2pk0 Þ ¼

Z
dk0jh2skjTj2pk0ij2δðE2s þ Ek − E2p − Ek0 Þ

þ
X
n0l0

jh2skjTj2pn0l0ij2δðE2s þ Ek − E2p − En0l0 Þ; ð7Þ

(note: 1s2 is common to all atomic states and omitted in the
state label for brevity). For the right-hand side, we write out
the integral over k0 and sum over k0 (which turns into a set
of nl states). The first term with the integral is the
contribution from collisional excitation of 2s to 2p where
the energy difference is 6.0066 eV [37]. The delta function
ensures conservation of energy between the initial and final
states. Thus, through this process, the incident electron (i.e.,
perturbing electron) collides and excites the atom from 2s
to 2p and leaves the system with 6 eV less energy than it
started, Ek0 ¼ Ek − 6 eV. Therefore, as long as the in-
cident-electron energy, Ek, is greater than the atomic
excitation energy, this collisional excitation happens, which
can be seen from the nonzero cross section above Ek >
6 eV in Fig. 2.
The second term of Eq. (7) is the contribution from

EC. This term suggests that there is a nonzero contribu-
tion to broadening even if Ek is less than 6 eV. In order
for this to happen, the scattered electron has to go to a
negative-energy (bound) state, becoming trapped by
the atomic potential. Since the bound states (n0l0) have
discrete energies, the process is only allowed when
Ek ¼ En0l0 þ 6 eV. This EC contribution is shown as

discrete contributions below 6 eV in Fig. 2. It is also
worth noting that this EC contribution on line widths
becomes more important at lower temperature due to the
larger abundance of such low-energy (< 6 eV) free elec-
trons. This is indicated by the weighting function,
expð−βk2=2Þ of Eq. (2) and the gray curves in Fig. 2.
This EC contribution is easily overlooked when the line

width is evaluated as a sum over cross sections [like in
Eq. (3)] because σ̂l→l0 ðkÞ is the cross section between
atomic states l and l0, omitting the cross section from a
Li-like state (e.g., l ¼ 1s22s) to a doubly excited Be-like
state (e.g., 1s22p3p where l0 ¼ 1s22p and k0 ¼ 3p).
Equation (3) is still correct as long as l0 is extended to
include recombination to lower-charge states, but to our
knowledge, it has never been explicitly stated in the
literature. Below, we evaluate how important EC is for
the longstanding isolated line discrepancy.
We first evaluate the impact of EC by using a Coulomb-

Born-Exchange (CBE) calculation [38]. CBE uses the
approximation

ImhlkjTjlki ≈ −πhlkjVδðE −H0ÞVjlki; ð8Þ

where V is a Coulomb interaction that includes exchange
(i.e., accounting for indistinguishability of electrons). The
effect of EC in this approximation is only going to affect the
broadening of the upper and lower states and will not
contribute to the interference term. This is due to the delta
function in Eq. (2), which means that the set of intermediate
states will have the same energy as the starting state.
When line widths are computed without the EC con-

tribution [first term of Eq. (7) alone], our CBE calculation
reproduces the familiar factor-of-two underestimate
(wcalc=wmeas ¼ 0.55), as expected. By including the EC
contribution [i.e., both terms of Eq. (7)], the line width
increases and successfully reproduces the measured line
width, wcalc=wmeas ¼ 1.02, within the measurement error
(Table I).
This result implies that the line-width disagreement was

caused by the lack of EC contribution; however, it was not
immediately clear whyGriem et al. [12] could not reproduce
the measured width using convergent-close-coupling

FIG. 2. Shown is the cross section for different values of the
incident-electron energy, Ek. Excitation (Ek > 6 eV) is shown in
red, while electron capture (Ek < 6 eV) is shown as the discrete
black features below the excitation threshold. Boltzmann dis-
tributions for Te ¼ 15 eV (dotted line) and Te ¼ 5 eV (dash-
dotted line) are also shown to demonstrate that electron capture
becomes more important at lower temperatures.
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(CCC) [39] or R-matrix [40] methods. Both solve the
Lippmann-Schwinger [34] equations exactly instead of
using the approximate form [Eq. (8)]. Griem et al. [12]
also stated that “electron impact ionization and recombina-
tion can be safely neglected.” If “recombination” refers to
EC, then this statement contradicts our finding.
Our hypothesis is that Griem et al. [12] did not include

EC when performing the sum of cross sections [Eq. (1) in
[12] ] and was referring to three-body recombination when
stating “recombination.” Griem et al. [12] uses Eq. (3) for
line-width calculations. While this expression requires
deliberate inclusion of all processes including EC,
Ref. [12] did not mention this process, and CCC does
not output the EC cross sections. It is highly possible that
EC contribution was overlooked in their calculations.
We can test this hypothesis by recalculating the line

width using CCC that includes EC. Since CCC does not
output EC cross sections, we use the more fundamental
form, Eq (2), using the three T-matrix terms that are
directly computed with CCC. This is the equation before
introducing the identity resolution [Eq. (5)], and the EC
effect is naturally included in the free-free T matrices.
With this alternative way to include EC broadening,
CCC also reproduced the experimental widths within 3%
(wcalc=wmeas ¼ 1.03). This strongly supports our hypothesis
that Griem neglected EC and asserts the importance of EC
on Li-like line widths. These 2s-2p CCC results are shown
in Table I and Fig. 3(a).
These findings also seem to explain why the calculations

of Duan et al. [32] agreed with experiments. Duan et al.
[32] used an alternate form of Eq. (2) with S matrices [see
Eqs. (1) and (2) in Ref. [41] ], and S matrices are computed
by taking into account the interaction of bound and free
electrons using an R-matrix code [DARC [42] ], which has
the same physics as CCC [43]. As a result, their line-width
calculations naturally included the EC contributions and
agreed with the measured B III 2s-2p widths.
In Fig. 3(a), we also display the 3s-3p line widths using

CCC, with and without EC, for the conditions and elements
from Refs. [15,16,19]. CCC without EC are taken from
Ralchenko et al. [13]. The extra broadening due to EC is
not as large as that for the 2s-2p line. This behavior is
expected because as the principal quantum number
increases, the number of available EC channels become
smaller and the interaction between atomic and perturbing
electrons becomes weaker.

It is interesting to note that some calculations show
bigger EC corrections than others within the same element.
For example, for N V lines, some calculations show notable
changes due to EC (∼60%) while others do not (∼10%).
This is caused by strong dependence of EC on electron
temperature, Te. To clarify the temperature dependence on
the EC effect, we replotted N Vand O VI results in Fig. 3(b);
their line-width increases due to EC is plotted as a function
of Te. This figure confirms the strong correlation between
EC broadening and Te as discussed earlier.
Motivated by the temperature dependence of EC, we

replotted all the elements considered in Fig. 3 as a function
of Te in Fig. 4. Different colors are assigned to different
elements and the different symbols are assigned to the
different experiments. We find that, for all conditions less
than ∼10 eV, the inclusion of EC is enough to remove the
previously reported discrepancies with measured widths,
independent of element and independent of experiments.
Figure 4 also suggests that the remaining discrepancies

scale more strongly with Te than atomic number (as
originally shown by Ref. [13]). This may suggest that
either the experiment has more low-energy free electrons
than inferred by Thomson scattering or that there is
additional temperature-dependent broadening mechanism
missing from current theory.
The impact of EC on other line widths needs to be

carefully scrutinized. EC cannot happen in neutral radiators
because a net attractive charge is necessary to trap the
incident electron into a bound state. The EC broadening
becomes important for lower principal quantum number n
at lower temperature. Its importance also scales with the

TABLE I. CBE and CCC widths for B III 2s − 2p line at
Te ¼ 10.6 eV and ne ¼ 1.81 × 1018 e=cm3; the measured width
is 0.22� 0.03 Å [17]. All widths are given in Å.

No EC With EC

CBE 0.122 0.224
CCC 0.104 [12] 0.227

(a)

(b)

FIG. 3. (a) Ratios of calculated width over measured width by
CCC without EC (black “x”; Ref. [12,13]) and CCC with EC (red
circle). Each individual point corresponds to a different temper-
ature and density. The spread in the red circles comes from Te
dependence on EC contribution. (b) The percent increase in the
width due to EC on N V and O VI as a function of Te. The grey
bands indicate the average level of measurement uncertainty
across all measurements.
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number of available EC channels. One important area of
investigation is its impact on K-shell spectroscopy. The
density of hot plasma is often diagnosed by line shapes of
H-like and He-like lines. Based on our CBE calculations, it
has a significant effect on alpha lines (n ¼ 1–2) but is
negligible on beta and above (n ¼ 1–3 or higher); this is
due to the reduced number of EC channels and weaker
interaction with increasing n. Negligible impact on higher n
lines is good news because alpha lines are not density
sensitive and are not used for density diagnostics, density is
usually determined from high-n line shapes. Models of
alpha lines have additional complexities due to ion dynam-
ics and strong collision treatment, and have never been
experimentally validated due to its high sensitivity to
Doppler and instrumental broadening, and plasma gra-
dients. EC broadening needs to be added to this complexity
list for future investigations of alpha lines. Its impact on
more complex lines needs to be investigated too. For
example, recently, L-shell line widths measured at stellar
interior conditions are significantly broader than calculated
widths [44]. L-shell line opacities are line transitions
starting from n ¼ 2 (e.g., n ¼ 2–3, 2–4, etc.) and the
additional broadening due to EC is expected to be strongest
for the n ¼ 2–3 lines. If EC is important, it could affect the
accuracy of L-shell opacity calculations that many plasma
simulations rely on.
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