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Tertiary modes in electrostatic drift-wave turbulence are localized near extrema of the zonal velocity
UðxÞ with respect to the radial coordinate x. We argue that these modes can be described as quantum
harmonic oscillators with complex frequencies, so their spectrum can be readily calculated. The
corresponding growth rate γTI is derived within the modified Hasegawa-Wakatani model. We show that
γTI equals the primary-instability growth rate plus a term that depends on the localU00; hence, the instability
threshold is shifted compared to that in homogeneous turbulence. This provides a generic explanation of
the well-known yet elusive Dimits shift, which we find explicitly in the Terry-Horton limit. Linearly
unstable tertiary modes either saturate due to the evolution of the zonal density or generate radially
propagating structures when the shear jU0j is sufficiently weakened by viscosity. The Dimits regime ends
when such structures are generated continuously.
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Drift-wave (DW) turbulence plays a significant role in
fusion plasmas and can develop from various “primary”
instabilities [1–7]. However, having their linear growth rate
γPI above zero is not enough to make plasma turbulent,
because the “secondary” instability can suppress turbulence
by generating zonal flows (ZFs) [5–12]; hence, the thresh-
old for the onset of turbulence is modified compared to the
linear theory. This constitutes the so-called Dimits shift
[12–17], which has been attracting attention for two
decades. The finite value of the Dimits shift is commonly
attributed to the “tertiary” instability (TI) [5], and some
theories of the TI have been proposed [5,15–20]. However,
basic understanding and generic description of the TI and
the Dimits shift have been elusive.
Here,we propose a simple yet quantitative theory of theTI

using the modified Hasegawa-Wakatani equation (MHWE)
[2,16] as a base turbulence model. We clarify several
misconceptions regarding the TI, and we explicitly derive
the Dimits shift in the limit corresponding to the Terry-
Horton model [15,21]. Our approach is also applicable to
other DW models, such as ion-temperature-gradient (ITG)
turbulence [5], as discussed toward the end. Furthermore,we
explain TI’s role in two types of predator-prey (PP)
oscillations in determining the characteristic ZF scale in
the Dimits regime and in transition to the turbulent state.
Model equations.—The MHWE [2,16] is a slab model of

two-dimensional electrostatic turbulence with a uniform
magnetic field B ¼ Bẑ. Turbulence is considered on the
plane (x; y), where x is the radial coordinate and y is the
poloidal coordinate. The model describes φ and n, which
are fluctuations of the electric potential and density,
respectively. Ions are assumed cold while electrons have
finite temperature Te. The plasma is assumed to have an

equilibrium density profile n0ðxÞ parametrized by a con-
stant κ ≐ a=Ln, where a is the system length and
Ln ≐ ð−n00=n0Þ−1. (We use ≐ to denote definitions and
prime to denote ∂x.) Plasma resistivity produces primary
instabilities and is modeled by the “adiabaticity parameter”
α. We normalize time by a=Cs where Cs ≐

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
,

length by ρs ≐ Cs=Ωi, where Ωi is the ion gyrofrequency,
φ by Teρs=ea, and n by n0ρs=a. Then, the MHWE is
written as [16]

dtw¼ κ∂yφ− D̂w; dtn¼ αðφ̃− ñÞ− κ∂yφ− D̂n: ð1Þ
Here, dt ≐ ∂t þ ðẑ × ∇φÞ · ∇ and w ≐ ∇2φ − n is minus
the ion gyrocenter-density perturbation [22]. Also, φ̃ and ñ
are the nonzonal parts of φ and n; e.g., φ̃ ≐ φ − hφi, where
h…i denotes the average over y, or the zonal average. The
operator D̂ models drag and (or) viscosity; its specific form
is not essential. (We choose D̂ to be hyperviscosity large
compared to that in Ref. [16], so the related effects manifest
in simulations faster and more clearly.) The zonal average
of Eq. (1) reads

∂tU ¼ −hṽxṽyi0 − D̂U; ∂tN ¼ −hṽxñi0 − D̂N; ð2Þ

whereUðx; tÞ ≐ hφi0 is the ZF velocity, Nðx; tÞ ≐ hni is the
zonal-density perturbation, and ðṽx; ṽyÞ ¼ ẑ × ∇φ̃. Below,
we develop our TI theory based on Eq. (1). An example of
MHWE simulations is also illustrated in Fig. 1 and will be
discussed later.
Tertiary instability.—Absent ZFs, w ∝ eiðp·x−ΩptÞ is a

linear eigenmode whose dispersion relation is similar to
that in the Hasegawa-Mima model [1]:
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Ωp ¼
κpy

p̄2
− iDp; p̄2 ≐ p2

x þp2
y þ

iαþ κpy

iαþ iDp þΩp
: ð3Þ

Here, p ¼ ðpx; pyÞ, andDp is obtained from D̂ by replacing
∇ with −ip. The primary instability develops when
γPI ≐ ImΩp > 0, and γPI is maximized at px ¼ 0 and
py ∼ 1. However, this instability is modified once ZFs
are generated by the secondary instability. In the presence
of ZFs, DWs tend to localize near extrema of U, as seen in
Fig. 1(a) (also observed in Refs. [3,24,25]), and their
growth rates are also affected. To describe these effects,
we assume a zonal state with prescribedUðxÞ and NðxÞ and
consider a perturbation w̃ ¼ Re½ψðxÞeiðpyy−ωtÞ�. Then, the
linearized MHWE (1) leads to

ωψ ¼ Ĥψ ; Ĥðx; p̂xÞ ¼ py½U þ ðκeff þU00Þ ˆ̄p−2� − iD̂:

ð4Þ

Here, κeff ≐ κ − N0, p̂x ≐ −iðd=dxÞ, and

ˆ̄p2 ≐ p̂2
xþp2

yþðiαþ iD̂þω−pyUÞ−1ðiαþpyκeffÞ: ð5Þ

Note that Ĥ depends on ω through ˆ̄p.
To obtain preliminary understanding of these eigenm-

odes, we first adopt a simple zonal profile:

UðxÞ ¼ u cos qZx; NðxÞ ¼ 0; ð6Þ

in which case κeff ¼ κ. Then, numerical eigenmodes can be
found from Eq. (4) assuming periodic boundary conditions.
There are infinitely many eigenmodes, but most of them are
small-scale and heavily damped. The two most unstable
modes have the largest scales [Fig. 2(a)]. These modes can
be intuitively understood by examining their corresponding

Wigner functions Wðx; pxÞ ≐
R
dse−ipxsψðxþ s=2Þ×

ψ�ðx − s=2Þ, which loosely represents the distribution
function of DW quanta, or “driftons” [26,27] (the asterisk
denotes complex conjugate). In large-scale ZFs, driftons
obey Hamilton’s equations, where the Hamiltonian H is
obtained from Ĥ by replacing ðD̂; p̂xÞ with ðDp; pxÞ and
taking the real part of the result [27,28]:

Hðx; pxÞ ¼ py½U þ ðκ þU00ÞRep̄−2�: ð7Þ

Naturally, driftons tend to accumulate near phase-space
equilibria of H, which are x ¼ xn ≐ nπ=qZ, px ¼ 0
(n ¼ 0;�1;�2;…), so W peaks near these locations
(and overall, it is aligned with isosurfaces of H), as
seen in Fig. 2(b). This explains eigenmode localization
near extrema of U. Maxima of U (even n) correspond to
phase-space islands encircled by “trapped” trajectories, and
minima (odd n) correspond to saddle points passed by the
“runaway” trajectories [27–30]. Hence, we call the modes
localized near maxima and minima of U as the trapped and
runaway modes, respectively.
Let us consider a mode localized near some x ¼ xn and

shift the origin of x, so U ≈ U0 þ Cx2=2, where U0 ¼ �u
is the ZF velocity at the extremum, and C≐U00ð0Þ¼∓q2Zu
is the local ZF “curvature.” Since the mode is localized

(a) (c)

(d)

(b)

FIG. 2. (a) Trapped and runaway modes (plotted together) for
the zonal profile (6): Numerical solutions of Eq. (4) (color) versus
analytic solutions (9) (dashed contours) at α ¼ 5, κ ¼ 12,
qZ ¼ 0.3,u ¼ 10, andpy ¼ 1. Thegreen curve showsU. (b) Same
mode structures in phase space: Wigner functions (color) versus
isosurfaces of the Hamiltonian (7) (dashed contours). (c) Numeri-
cal (labeled “N”) and analytic (labeled “A”) growth rates versus u.
The subscripts “T” and “R” stand for trapped and runaway,
respectively. The analytic growth rates are obtained by solving
Eq. (9) iteratively with ω ¼ pyU0 þ pyκ=p̄2

0 − iD0 as the initial
guess. (d) Dimits shift in the Terry-Horton limit: Simulation results
of the modified Terry-Horton equation with δp ¼ δ0py and D̂ ¼
1 − 0.01∇2 (green circles and red crosses) versus analytic results
[Eq. (13) with py ¼ 1 and ϱ ¼ 0.05]. Simulation details are the
same as in Ref. [15] (cf. Fig. 7 therein).

(a)

(b)

FIG. 1. Results ofMHWE simulations using DEDALUS [23] with
α ¼ 5, κ ¼ 12, and D̂ ¼ 0.1∇4. The system is initialized with
small random noise. (a) A snapshot at t ¼ 1000 showing fluctua-
tions w̃ (color), U (solid line), and κeff ≐ κ − N0 (dashed line).
(b) Evolution of the DW energy EDW ≐

R ðñ2 þ j∇φ̃j2Þdx=2, and
the zonal energy EU ¼ R

U2dx=2 and EN ¼ R
N2dx=2. The inset

is an enlargement showing the energies in log scale at 0 < t < 50
when the primary and secondary instabilities develop. Type-I PP
oscillations are indicated by blue circles, and a type-II PP
oscillation is indicated by the red star. (See text for more details.)
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in both x and px, one can use the Weyl expansion [31] of Ĥ
as Ĥ ≈Hþ λpp̂2

x þ λxx2, where

H¼ py½U0þðκþ CÞp̄−2
0 �− iD0; λp ¼ −pyðκþ CÞp̄−4

0 ;

λx ¼
pyC
2

�
1−

pyðκþ CÞðiαþpyκÞ
p̄4
0ðiαþ iD0þω−pyU0Þ2

�
;

p̄2
0 ¼ p2

y þðiαþpyκÞ=ðiαþ iD0 þω−pyU0Þ;

and D0 ¼ Dpðpx ¼ 0Þ. Then, Eq. (4) becomes similar to
the equation of a quantum harmonic oscillator

−λpψ 00 þ λxx2ψ ¼ ðω −HÞψ ; ð8Þ

except that its coefficients are complex. The solutions
are [32]

ψm ¼ e−
x2
2λHmðx=

ffiffiffi
λ

p
Þ; ωm ¼ Hþ ð2mþ 1Þλxλ; ð9Þ

where Hm denotes Hermite polynomials, λ ≐
ffiffiffiffiffiffiffiffiffiffiffi
λp=λx

p
, and

m ¼ 0; 1; 2;…. We choose the branch of the square root
with Reλ > 0. The runaway and trapped modes shown in
Fig. 2(a) correspond tom ¼ 0, and for comparison, we also
plot our analytic solutions (9) in the same figure. Below, we
only consider modes with m ¼ 0, which usually have the
largest growth rates, and hence drop the subscript m. Also
note that only the local ZF curvature C enters Eq. (8), so the
ZF does not need to be sinusoidal for Eq. (9) to hold.
TI as a modified primary instability.—If γ > 0, then the

eigenmode (9) grows exponentially. This is the TI. Notice
that in the absence of ZFs, ω reduces to pyκ=p̄2

0 − iD0,
which is nothing but the primary-DWeigenfrequency (3) at
px ¼ 0. Therefore, the TI eigenmode can be understood as
a standing DW eigenmode modified by the ZF, and from
Eq. (9), its growth rate is

γTI ¼ γPI þ ΔγðCÞ; Δγ ¼ γPIC=κ þ ImðλxλÞ: ð10Þ

Here, Δγ ¼ 0 at C ¼ 0, when γTI reduces to γPI. Also, Δγ
depends on the sign of C, so the trapped and runaway
modes have different growth rates. Predictions from the
analytic formula (10) are compared with numerical sol-
utions of Eq. (4) in Fig. 2(c).
These results show that mode localization is a key feature

of the TI. This feature is missed in some previous studies
[15,19,20] where the TI was derived from the interaction of
just four Fourier harmonics. Also, our findings challenge
the popular idea that the TI is a Kelvin-Helmholtz insta-
bility (KHI) [3,16,20]. The TI studied here is caused by
dissipation (i.e., finite α), just like the primary instability,
while the KHI is caused by strong flow shear. Therefore,
unlike the KHI that develops when the ZF is too strong, the
TI develops when the ZF is weak and becomes suppressed
when the ZF is strong. The absence of KHI is due to the fact

that, in the MHWE, φ̃ is assumed to have nonzero wave
number pk along B, and thus, electrons respond adiabati-
cally (ñ ≈ φ̃) at large α. As shown in Ref. [33], for α → ∞,
the KHI is suppressed at all q2Z < 1. Here, α is finite but still
large (α ¼ 5), so similar conclusions apply. We found
numerically (not shown) that for the parameters used in
Fig. 2(c), the KHI develops at u≳ 103, which is too large to
be relevant. Note that the assumption of nonzero pk
originates from the fact that the MHWE is intended to
mimic turbulence in toroidal geometry with magnetic shear.
But KHI can be more relevant in other geometries where
pk ¼ 0 is possible and electron adiabatic response does not
hold [34]. For example, this is the case in Z pinches [17].
TI and Dimits shift.—The above TI theory leads to a

simple understanding of the Dimits shift, at least in the
large-α limit. Assuming ω − pyU ≈ κpy=p̄2 and small D0,
Eq. (5) can be approximated in this limit as

ˆ̄p2 ¼ 1þ p̂2
x þp2

y − iδp; δp ¼ κp2
y=½αð1þp2

yÞ�: ð11Þ

This corresponds to the Terry-Horton model [15,21], which
is a one-field model that evolves φ but not n (i.e., N ¼ 0)
and assumes a constant phase shift δp between φ̃ and ñ.
(Different forms of δp can also be chosen to model different
primary instabilities [15].) Then, the Hamiltonian (4) no
longer depends on ω, so the growth rate is found explicitly:

γTI ¼ Im

�
pyðκ þ CÞ

1þ p2
y − iδp

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

2ðκ þ CÞ

s ��
−D0: ð12Þ

Here, we consider the runaway mode (C > 0), because it is
usually more unstable than the trapped mode in this model.
Equation (12) allows calculation of the TI threshold, i.e.,
the value of κ at which γTI ¼ 0. We denote this value as κc.
One finds from Eq. (12) that κc differs from the linear
threshold by ΔDS:

ΔDS ¼ κc − κlin; κc ¼
D0

py

ð1þ p2
yÞ2 þ δ2p

δp − ð1þ p2
yÞ

ffiffiffiffiffiffiffiffi
ϱ=2

p ; ð13Þ

where κlin ≐ κcjϱ¼0 is the linear threshold of the primary
instability and ϱ ≐ C=κ. (To simplify the formula for κc, we
assumed the typical regime ϱ ≪ 1.)
A ZF cannot suppress the TI at κ > κc, so ΔDS is

the Dimits shift. For ZFs generated self-consistently,
ϱ is roughly constant (see below) and can be estimated
numerically. Then, ΔDS is found by minimizing Eq. (13)
over py. Following Ref. [15], we adopt δp ¼ δ0py and
D̂ ¼ 1 − 0.01∇2; then, ΔDS is minimized at py ≈ 1, and its
corresponding value is in good agreement with direct
simulations of the modified Terry-Horton system
[Fig. 2(d)]. The simulation details are the same as in
Ref. [15], where similar numerical results are compared
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with a different theory. Unlike in Ref. [15], we derive ΔDS
explicitly and do not reduce the problem to the interaction
of just four Fourier harmonics. Furthermore, our γTI is
determined by the local ZF curvature, so ΔDS is insensitive
to the specific shape of the ZF.
In summary, in the Terry-Horton limit, the Dimits shift is

caused by the difference between γTIðCÞ and γPI, and the
Dimits regime ends when the ZF becomes too weak to
suppress the TI. This is different from the previous study
[5] of the ITG system, which found that the TI becomes
unstable when the ZF becomes too strong. The difference is
due to the fact that in Ref. [5], the perturbations of the ion
perpendicular temperature cause an additional destabilizing
effect. However, the stabilizing effect of the ZF curvature
remains the same [35].
TI’s roles in nonlinear dynamics.—At smaller α, N is

nonzero [41] and can affect γTI and ΔDS. This makes the
MHWE model more complicated than its Terry-Horton
limit considered above. Nevertheless, some interesting
effects seen in MHWE simulations can be explained in
the context of our TI theory.
To simplify the mode structure, we assume large hyper-

viscosity, so small-scale variations of U and N are washed
out. (Using normal viscosity leads to similar results, as
checked numerically.) In this case, trapped and runaway
modes are still observed yet exhibit different py [Fig. 1(a)].
This can be explained by allowing for nonzero N. For
example, we consider

UðxÞ ¼ u cos qZx; NðxÞ ¼ N0 sin 2qZx ð14Þ

based on numerical observations [Fig. 1(a)]. The corre-
sponding growth rates γ of the trapped and runaway modes
are found numerically. It is seen in Fig. 3(a) that these
growth rates decrease as N0 increases (i.e., as κeff decreases
at extrema of U). For the runaway mode, the peak of γ
remains at py ≈ 1.2, but for the trapped mode, the peak

shifts to smaller py. This agrees with the self-consistent
simulations showing that the trapped mode has smaller py

[Fig. 1(a)].
Since ZFs are subject to viscous damping, turbulence

cannot be suppressed indefinitely, and PP oscillations
occur. Compared to those in zero-dimensional models
[11], the PP oscillations are more intricate and can be of
two types: type I corresponds to the exchange between EDW
and EN , while type II corresponds to the exchange between
EDW and EU [Fig. 1(b)]. Type-I PP oscillations occur more
frequently because EN decays faster than EU (N is more
prone to viscous damping due to larger wave number), and
the corresponding bursts of EDW saturate quickly due to the
decrease of κeff . The latter increases EN but has little effect
on EU, so the ZF amplitude u decreases approximately
monotonically. However, when u becomes small enough, a
type-II PP oscillation occurs. Then, a trapped mode does
not saturate but develops into an avalanchelike nonlinear
structure propagating radially (Fig. 4). This propagation
triggers a turbulence burst ending with a rapid increase of
the ZF amplitude; hence, EU increases too. After such a
burst, turbulence becomes suppressed again, and the Dimits
regime is reinstated until the next type-II PP oscillation.
(Similar propagating structures have also been found in a
reduced model of ITG turbulence [42], and separately, in
simulations of DW turbulence in a linear device [43]).
Note that the propagating structures observed here are

different from the DW-ZF solitons generated in the large-α
limit [44]. They may be related to those seen in simulations
of subcritical turbulence [45–47]. In our case, for a given
qZ, whether the trapped mode develops into a propagating
structure depends on the critical ZF amplitude uc, or the
critical shear Sc ≐ qZuc. The critical shear in turn deter-
mines the characteristic ZF amplitude, i.e., u ≈ uc, because
ZFs decay at u > uc and are amplified by propagating
structures at u < uc.

(a)

(b)

FIG. 3. (a) The growth rates of the trapped (γT , circles) and
runaway (γR, triangles) modes found numerically for the zonal
profile (14) at qZ ¼ 0.3 and u ¼ 20. Different colors indicate
different values of N0 for trapped (runaway) modes: blue, N0 ¼ 0
(N0 ¼ 0); red, N0 ¼ 5.4 (N0 ¼ 1.8); green, N0 ¼ 9 (N0 ¼ 3.6).
The peak of γT shifts to smaller py, but the peak of γR remains at
py ≈ 1.2. (b) The critical shear Sc ¼ qZuc versus κ at α ¼ 5,
qZ ¼ 0.3, and py ¼ 0.4. We also plot γPI, and γT at u ¼ uc
(denoted γT;c).

(a) (b) (c) (d)

FIG. 4. Snapshots of a propagating structure corresponding to
(a) t ¼ 756, (b) t ¼ 763, (c) t ¼ 770, and (d) t ¼ 777 of Fig. 1.
The axes are rotated by 90° compared with Fig. 1(a). This
structure originates as a trapped mode (py ¼ 0.4) at x ≈ −10 and
propagates to the neighboring minimum of U at x ≈ −20. Both
the minimum and the maximum of U are amplified by this
structure, resulting in an increase of EU.
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We numerically identify the critical shear by considering
the initial zonal profile (6) and applying a small perturbation
w̃ ∝ eipyy. By varyingu, we find the critical valueu ¼ uc and
the corresponding critical shear Sc ¼ qZuc above which
the structure ceases to propagate. The results are shown in
Fig. 3(b), where we also plot γPI and γT;c, the latter being the
trapped-mode growth rate at u ¼ uc. It is seen that γPI is not a
linear function of κ (rather, γ ∼ κ1.5), but both Sc and γT;c
increase linearly with κ. This justifies our earlier assumption
that ϱ is constant in Eq. (13).
The effects of S (typical U0) and C (typical U00) together

determine the characteristic ZF wave number qZ in the
Dimits regime, specifically, as follows. First, qZ cannot be
too large, because large qZ corresponds to small ZF ampli-
tude u ∼ jCj=q2Z assuming jCj is bounded by the TI threshold
(otherwise, the TI is stable and the ZF decays), and ZFs with
large qZ and small u tend to merge [27,29,48]. Next, qZ
cannot be too small either, because small qZ corresponds to
small jCj ∼ qZSc (assuming S ∼ Sc), unleashing the primary
instability; then, the secondary instability would develop like
in homogeneous turbulence and the ZFwith larger qZ would
emerge.
As κ increases, the TI becomes more active in producing

propagating structures. When such structures are produced
almost continuously, the Dimits regime ends, i.e., plasma
becomes turbulent. As found numerically (not shown), for
α ¼ 5, that occurs at κ ≳ 20. This threshold does not
depend significantly on the simulation-domain size as long
as the latter is large enough compared to the typical scales
of ZFs and DWs.
Discussion.—Although we adopt the MHWE as our

base model, our general approach to the TI is applicable
more broadly. Any other model also leads to Eq. (4), except
with a different Ĥ. Since the TI localization is a feature
common in many models [3,5,18,24,25,42], one can Weyl
expand the corresponding Ĥ like we did above and
again arrive at Eq. (9) (with different coefficients); hence,
the qualitative physics remains the same. In the
Supplemental Material [35], we show how this approach
helps reproduce the key features of the TI in ITG turbulence
within the model studied in Ref. [5]. We also show
there that gyrokinetic simulations of ITG turbulence (using
the code GS2 [36]) exhibit similar localized modes.
Although these supplemental findings are not central to
our work, they suggest interesting directions for future
research.
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