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Magnetic field generated by the Biermann battery is thought to be one of the principal mechanisms
behind the inhibition of heat flow in laser-plasma interactions, and is predicted to grow exponentially in
some contexts due to the thermomagnetic instability [Tidman and Shanny, Phys. Fluids 17, 1207 (1974)].
In contrast to these predictions, however, we have conducted Vlasov-Fokker-Planck simulations of
magnetic field dynamics under a range of classically unstable laser-fusion conditions, and find field
generation to be strongly suppressed, preventing magnetization of the transport, and stabilizing instability.
By deriving new scaling laws, we show that this stabilization is a consequence of (i) heavy suppression of
the Biermann battery under nonlocal conditions; (ii) rapid convection of magnetic field by the heat flow;
and (iii) comparatively short field length scales. Our results indicate that classical models substantially
overestimate the importance of magnetic fields generated by the Biermann battery, and the susceptibility of
laser-fusion plasmas to the thermomagnetic instability.
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The generation of magnetic field during the interaction
of high power lasers with plasmas is a topic of importance
for both fundamental plasma physics and laser-fusion
research, primarily because magnetic fields strongly affect
transport of thermal energy [1]. Multimegagauss magnetic
fields are readily generated in a variety of laboratory plasma
experiments, including those relevant to inertial confine-
ment fusion (ICF) [2–5]. The main source of magnetic field
(flux density B) in these cases is the Biermann battery (the
baroclinicmechanism), which occurs when gradients in the
electron number density ne and temperature Te are non-
parallel, and at the rate ∂B=∂t ¼ ∇Te ×∇ne=ene (elemen-
tary charge e) [2,4]. Under conditions involving feedback
from magnetized thermal transport (heat flow), the bar-
oclinic mechanism is believed to generate filamentary
magnetic field at an exponential rate by an effect known
as thermomagnetic instability [6,7]. For example, the onset
of thermomagnetic instability has been proposed as one of
the main causes of filamentary structures in coronal
plasmas, and as an explanation behind the need for thermal
flux inhibition when interpreting laser-plasma experiments
[8–11]. Despite these important applications, however,
studies of the instability have been limited to classical
linear models, unsupported by numerical simulation, mean-
ing that the relevance of the thermomagnetic mechanism to
nonlocal, laser-fusion conditions has remained largely
untested [6,7,12–15]. It has long been known, for example,
that classical transport models of laser-plasma coronas are
invalid (because the plasma is typically so hot and rarefied
that the electron mean-free-path λei is large compared to

system scale lengths), and under these conditions kinetic
simulations become essential [16,17].
In this Letter, therefore, we report the first kinetic study

of the thermomagnetic instability, with a special focus on
its consequences for magnetized transport in laser-fusion
plasmas. Crucially, we present the first simulations of the
thermomagnetic instability of any kind, and—contrary to
classical theory—find it to be stabilized for conditions
relevant to laser fusion. By deriving new scaling laws, we
show that the principal mechanisms behind this stabiliza-
tion are (i) reduced strength of the Biermann battery due to
nonlocality; (ii) rapid convection of magnetic field with the
heat flow (the Nernst effect); and (iii) the large electron
mean-free-path compared to the size of field perturbations.
Beyond the immediate context of laser fusion, however, the
thermomagnetic instability provides an ideal test bed for
quantifying the interplay between magnetic field genera-
tion, Nernst convection, and magnetized heat flow more
generally [13]. Our scaling laws suggest that the mecha-
nisms (i), (ii), and (iii) described above will severely limit
the impact of magnetic fields generated by the Biermann
battery in a wide variety of laser-plasma conditions.
The physical processes involved in the thermomagnetic

instability are shown in Fig. 1, assuming a geometry in
which the plasma is taken to have bulk zeroth-order
electron number density n0ðxÞ, and temperature T0ðxÞ
gradients in the x direction only. Should a first-order
transverse temperature perturbation δTðyÞ arise (due,
e.g., to variation in laser intensity), then a Biermann
magnetic field perturbation δBzðyÞ ∝ j∇δT ×∇n0j is gen-
erated in the z direction; this in turn induces a y-directed
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Righi-Leduc heat flow δqy toward the hotter regions of the
temperature perturbation [1,6,7], driving positive feedback,
and unstable growth of Biermann filaments.
Growth rates γ can be derived from a linear perturbation

analysis of the classical transport equations [1] assuming
δT; δBz ∝ expðγtþ ikyÞ, with wave number k [12–14]. In
this way one obtains the dispersion relation

γ� ¼ 1

2
f−½ðdT þ dRÞk2 − Ñ�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðdT þ dRÞk2 − Ñ�2 þ 4dTk2½dRðk2G − k2Þ þ Ñ�

q
g;
ð1Þ

where instability prevails whenever γ� > 0, and terms
describe the following: thermal diffusion dT ; resistive
diffusion dR; magnetic-field generation by the Biermann
battery (coupled to Righi-Leduc) k2G; and advection of the
magnetic field by the Nernst effect Ñ. These terms are
defined by

dT ¼ cBκ⊥
3

λ2ei
τei

; k2G ¼ c2B
2α⊥κ⊥δ2

∂κ∧
∂χ

λ2ei
lTln

; ð2Þ
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cBΛ2
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τei

; Ñ ¼ cB
2

∂β∧
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τ2eiT0

∂
∂x

�
τei

∂T0

∂x
�
; ð3Þ

where lT ≡ T0=ð∂T0=∂xÞ and ln ≡ n0=ð∂n0=∂xÞ are the
bulk temperature and density length scales, respectively,
and the remaining parameters are the following: the
electron mass me; the ratio Λ≡ λei=δ, with skin depth δ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=μ0nee2

p
, where μ0 is the permeability of free space;

the Braginskii collision time τB ¼ cBτei, with cB ¼ 3
ffiffiffi
π

p
=4

a dimensionless constant; and the electron-ion thermal
collision time τei¼ð4πv3TÞ=ðni½Ze2=ϵ0me�2 logΛeiÞ, where
logΛei is the Coulomb logarithm, vT ¼ λei=τei ¼
ð2Te=meÞ1=2 the thermal velocity, ϵ0 the permittivity of
free space, Z the atomic number, and ni ≈ ne=Z the ion
number density [12]. The transport coefficients—the resis-
tive diffusivity α⊥, the thermal diffusivity κ⊥, the Righi-
Leduc coefficient κ∧, and the Nernst coefficient β∧—are
dimensionless functions of Z, and the Hall parameter
χ ≡ ωLτB, with ωL ¼ ejBj=me; these coefficients are
expected to be strongly affected by nonlocal conditions
[13,16,17].

Crucially for our study, the analysis used to derive
Eq. (1) makes assumptions which will not hold rigorously
in practical contexts [12]. For example, the Biermann term
scales as k2G ∝ λ2ei=lnlT , while the Nernst term scales as
Ñτei ∝ λ2eið∂=∂xÞ½τeið∂T0=∂xÞ�=τeiT0 ∼ λ2ei=l

2
T , meaning

that growth rates are largest when length scales ln;T are
short compared to the mean-free-path λei, i.e., precisely
those contexts where nonlocality is important. Never-
theless, the dispersion relation does provide a useful means
for estimating the impact of effects.
Ignoring for the moment the Nernst term Ñ, plasma

conditions representative of an ICF hohlraum corona
(Te ≈ 3 keV, Z ≈ 50, ne ≈ 1027 m−3, ln ≈ 100 μm, and
lT ≈ 30 μm) suggest a peak growth rate of γ ≈ 1012 s−1

at wavelength λ ¼ 2π=k ≈ 17 μm, so that the instability can
be expected to develop within typical nanosecond pulse
lengths, and generate small filaments. Some authors have
argued that Nernst advection is likely to increase the growth
rate further [14,17], while others propose that fluid motion
alone will reduce the growth rate if it becomes comparable
to hydrodynamic rates [15]. However, in the region close to
critical, where the heat flux is greatest, we find that the
Nernst effect is the dominant convective process; this is
because typical Nernst velocities vN ≈ −ð2=5Þκ⊥∇Te=
ðneTeÞ ∼ 106 ms−1 (inward) [10,13] in the plasma corona
greatly exceed the typical ablation velocity vA ∼ 105 ms−1

(outward).
For our numerical study of the instability we use the

kinetic code K2 [18,19] which solves the Vlasov-Fokker-
Planck equation by expanding the electron distribution
function f in spherical harmonics (here truncated before
second-order to prevent collisional Weibel modes from
complicating the analysis [20]). We include electron-elec-
tron collisions on f0 and account for electron-electron
collisions on f1 by multiplying the electron-ion scattering
frequency by the factor ðZ þ 0.24Þ=ðZ þ 4.2Þ, which is
close to unity for our conditions. This common approxi-
mation is discussed inmore detail in, e.g., [21,22]. From [22]
we estimate that the error associatedwith this approximation
for the case of carbon (Z� ¼ 6) and helium (Z� ¼ 2) are
about 28% and 220%, respectively. Our results are therefore
only qualitative in the case of low-Z gases. Maxwell’s
equations are solved implicitly, which is necessary to avoid
artificial B-field generation in problems involving large heat
fluxes. Bulk fusion conditions corresponding to a dense target
on the left boundarywith a linear rise in the coronal region on
the right are modeled by setting the electron density to
ne ¼ Hðx; lxÞ þ 6½ðx − 0.15lxÞ=lc� × 1027 m−3, where lc is
the coronal length scale, lx is the x-domain size, and
Hðx; lxÞ ¼ ñ0þðñ1− ñ0Þf1þ tanh½ðx− 0.15lxÞ=0.1lx�g=2,
with densities ñ0 ¼ 5 × 1028 m−3, and ñ1 ¼ 2 × 1026 m−3.
We select Z� ¼ 50 to represent an underdense Au target.
These conditions were motivated by radiation hydrodynam-
ics simulations of hohlraums of the type shown in, e.g., [23],

FIG. 1. Thermomagnetic instability mechanism [6,7] depicting
the bulk density and temperature gradients ∇n0 and ∇T0, the
temperature perturbation δTðyÞ (dashed curve), the induced field
δBzðyÞ (solid curve with arrows), and the resulting Righi-Leduc
heat flow δqy (arrows in the y direction).
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in which significant volumes of the underdense plasma
region satisfy the criteria for instability.
Heating of the plasma in the underdense region

(ne < 9.1 × 1027 m−3) is modeled according to the rate
∂Te=∂t ¼ ½T̃ðx; lx; lyÞ × 2.7 keV − Te�=ps, where T̃ðxÞ ¼
ð1 − ε cos ½2πy=ly�Þf1þ tanh½ðx − 0.7lxÞ=0.2lx�g=2, with
ε ¼ 0.02, and y-domain size ly. This induces a transversely
perturbed heat flow toward the dense target with wave-
length ly. The left-hand boundary is maintained close to a
temperature of 1 keV to approximate the effect of radiative
cooling of the target. The strength of the perturbation is
influenced by the parameter ε, but determined self-con-
sistently by thermal transport. Increasing ε does not change
our main conclusions. Notice that the domain size can be
varied to study a range of perturbation wavelengths, and
plasma scale lengths (though we fix the coronal scale at
lc ¼ 100 μm), with boundary conditions reflective in x,
and periodic in y.
A set of profiles from a typical simulation is shown in

Fig. 2; only the corona satisfies the k2G > 0 condition for
field generating instability (due to the sign of lTln), and for
this reason we direct our attention to this region (e.g., x≳
20 μm for lx ¼ 100 μm). Here, we focus on four simu-
lations by setting ðlx; lyÞ ¼ ðns × 25 μm; lx=2Þ, with
ns ∈ f1; 2; 3; 4g; this allows us to examine four degrees
of nonlocality relevant to ICF plasmas, with peak values of
λei=lT ranging from 0.009 to 0.22. Each simulation is run
for t≳ 102 ps (i.e., ∼50 classical growth periods).
As seen by the Hall parameter χ ¼ ωLτB data in Fig. 2(b)

(data for the lx ¼ 100 μm case, with λei=lT ≈ 0.027), the
coronal region is more magnetized than the target surface
because of the longer collision time τei. However, the peak

Hall parameter remains small (χ ≈ 0.026), indicating that
the magnetic field fails to grow to levels capable of
affecting transport, or inducing thermomagnetic instability;
this contrasts with the classically predicted e-folding time
tγ ¼ γ−1 for these conditions of 5–20 ps, which is well
within the simulation run time (700 ps).
Nonlocal suppression of the heat flux qx into the target

(for the lx ¼ 100 μm case) is shown in the lineouts
displayed in Fig. 2(c). In each simulation, the peak
magnetic field in the corona rises approximately linearly
with time (rather than unstable, exponential growth), and
saturates after ∼500 ps. The peak values of the Hall
parameter during the simulation are shown in Fig. 2(d),
and plotted against the corresponding (peak) nonlocality
parameter λei=lT, indicating it is more difficult to magnetize
the corona as the nonlocality increases. In all cases, the Hall
parameter is minimal (χ ≪ 1).
We now explore the reasons for the lack of magnetization

of the corona by consideringB-field evolution according to
the induction equation. Under classical conditions the
induction equation is dominated by the Biermann and
Nernst terms, i.e.,

∂B
∂t ¼ ∇Te ×∇ne

ene
þ∇ × ðvN ×BÞ; ð4Þ

where vN ≈ ð−2κ⊥∇Te=5neTeÞ is the Nernst velocity [10].
In nonlocal conditions, however, this equation takes the
more general form [16,24]

∂B
∂t ¼ me∇ðnehv5iÞ ×∇ðnehv3iÞ

6en2ehv3i2
þ∇ × ðṽN ×BÞ; ð5Þ

where the angle brackets hvmi≡ ð4π=neÞ
R∞
0 f0vmþ2dv

denote velocity v moments over the isotropic component
of the distribution f0ðvÞ, with m ∈ Z. Note that the first
term above describes generalized baroclinic field gener-
ation (accounting for deviations from the classical
Biermann rate), while ṽN ¼ hvv3i=2hv3i is the generalized
Nernst velocity; both expressions reduce to their classical
forms when f0 is Maxwellian, i.e., f0 ∝ e−v

2

.
Comparing Eqs. (4) and (5), the magnetic field fails to

grow under nonlocal conditions for two main reasons: first,
the generalized baroclinic field generation rate is much
lower compared to the classical (Biermann) rate; and
second, the generalized Nernst effect ṽN remains strong
enough to advect the field out of the generation zone. Both
effects are quantified in Figs. 3(a) and 3(b), where we plot
the peak values of the two terms in Eq. (5) normalized to
their classical values of Eq. (4); this gives us a measure of
how much the induction terms deviate from classical
expectations as a function of nonlocality λei=lT, with both
processes suppressed as nonlocality increases. Note that in
each case we focus on peak values at the location
ðx; yÞ ¼ ð0.9lx; 0.75lyÞ, which is always near the region

(a) (b)

(c) (d)

FIG. 2. The B field (a) and Hall parameter (b) for the lx ¼
100 μm (ns ¼ 4) case at 360 ps. Plot (c) displays lineouts
(y ¼ 37 μm) of the temperature Te and heat flux q ¼ jqxj for
the lx ¼ 100 μm case at 20 ps, where the dashed line is the
critical surface (the classical Braginskii heat flux qB is displayed
for comparison). Plot (d) shows the maximum Hall parameter that
develops in the corona for each simulation ns, plotted against the
corresponding nonlocality parameter.
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of peak coronal magnetic field; however, comparable levels
of deviation from classical predictions are found through-
out the simulation. Power law fits to the simulation data
give a convenient means of determining the approximate
degree of reduction for a given nonlocality, in particular, we
find that the nonlocal baroclinic and Nernst terms follow

∂B
∂t ≈ 0.083

�
λei
lT

�
−0.453

�∂B
∂t

�
classical

; ð6Þ

and jṽN j ¼ ṽN ≈ 0.0566

�
λei
lT

�
−0.593

vN; ð7Þ

where ð∂B=∂tÞclassical ¼ j∇ne × ∇Tej=ene is the magni-
tude of the classical Biermann battery, and vN ¼ jvN j is the
magnitude of the classical Nernst velocity. These fits are
valid in the interval λei=lT ¼ ½0.009; 0.22�, and should be
prevented from exceeding unity if used at lower λei=lT. We
add that—in addition to the hohlraum coronal plasma
conditions considered here—we have performed comple-
mentary simulations using conditions relevant to direct-
drive plasmas, which also closely follow power laws (6)
and (7).
Although the Nernst velocity is reduced under nonlocal

conditions, the Nernst effect nevertheless impairs magneti-
zation because it advects the magnetic field from the corona
where it is generated, and into the dense target region (i.e.,
in the direction of the heat flow). To illustrate this, consider
the lineout (at y ¼ 18.5 μm) of the x-directed heat flow (the

dominant heat-flow direction) shown in Fig. 3(c); this
figure indicates that the rate of field generation by the
baroclinic mechanism is approximately balanced by the
rate of Nernst convection of the field into the target,
significantly reducing the total rate of change of coronal
magnetic field. The stabilizing effect of Nernst convection
was previously demonstrated in kinetic studies of the
collisional Weibel instability [25].
Note that although the Righi-Leduc heat flow plays a key

role in the field-generating instability, we find that it is
negligible in our simulations due to both the lack of
magnetization, and the effect of what might be termed
magnetic nonlocality: the ability of the heat-carrying
electrons to escape the region of magnetic field.
Although nonlocality is usually defined with respect to
temperature scale lengths by λei=lT, when a magnetic field
is present transport is also characterized by a magnetic
nonlocality parameter M≡ rL=lB, where rL ¼ vT=ωL is
the Larmor radius, with lB ¼ jBz=max ð∂Bz=∂x; ∂Bz=∂yÞj
as the shortest scale length of the magnetic field
perpendicular to its direction. Thus, for the heat-carrying
electrons (velocity ≈2.6vT) to complete a Larmor orbit
without leaving the field region, we require 2.6rL < lB or
M≡ rL=lB ≲ 0.38 (in addition to the usual condition
χ ≳ 1). The Hall parameter does not account for variations
in the magnetic field strength experienced by the electron
during the period of collisional or magnetic confinement.
This concept also applies to the other transport effects
involving magnetization of energetic electrons, for exam-
ple, the cross-field heat flow q⊥. Since our simulations are
in the range 0.5≲M ≲ 42, we expect magnetic nonlocality
to be a key further reason for the lack of magnetization:
heat-carrying electrons leave the magnetic field region
before significant deflection, limiting its effect.
It is interesting to note that the classically derived

expression for the thermomagnetic instability growth rate
γþ of Eq. (1) is consistent with the stabilization seen in our
simulations, even though the classical model is expected to
break down for nonlocal conditions. Although our simu-
lations show that nonlocal effects are important, the
inclusion of the classical Nernst convection term is itself
enough to predict stabilization, with Ñ ¼ ðcB=2Þ×
ð∂β∧=∂χÞðλ2ei=τ2eiT0Þð∂=∂xÞ½τei∂T0=∂x� undetermined by
the perturbation analysis, and therefore appearing as a
function of the bulk plasma conditions. Most previous
studies [6,14,15] neglected Ñ, or only considered the case
in which Ñ is positive, which leads to an enhancement of
the growth rate, as motivated by the idea that Nernst
convection can compress the magnetic field [26].
Nevertheless, Bol’shov [8] and Haines [27] have pointed
out that the thermoelectric effects could lead to saturation
of the field, which is the expected behavior when Ñ < 0,
with Nernst convection rarefying the field.
The behavior of Ñ can be investigated by modeling the

bulk temperature T0 according to a “quasi-Gaussian”

(a) (b)

(c) (d)

FIG. 3. (a) The generalized baroclinic field generation rate, and
(b) the generalized Nernst velocity, each normalized to their
classical value, as a function of nonlocality. (c) Lineouts (at
y ¼ 18.5 μm) of the generalized baroclinic and Nernst convec-
tion rates at 180 ps for the lx ¼ 50 μm simulations, showing the
approximate cancellation of the two terms throughout the corona
(the total field generation rate is plotted for comparison). (d) The
peak instability growth rate γM of Eq. (1) as a function of the
thermal scale length lT , for typical ICF conditions (with and
without the Nernst term).
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profile of the form T0ðxÞ ¼ T̂0ð1þ sin½2πx=l̂T �Þ, where l̂T
is the scale length of T0, with T̂0 as the half maximum.
Under these assumptions ÑðxÞ takes its greatest value at
x ¼ l̂T=4, with

Ñðl̂T=4Þ ¼ −3072
�∂βc∧

∂χ
�

ϵ40π
9=2T̂4

0

τeiðZe4ne logΛeiÞ2
; ð8Þ

where the thermoelectric derivative ∂βc∧=∂χ is calculated
from the polynomial fits [28]. The inclusion of this term in
the dispersion relation of Eq. (1) is sufficient to reduce
the growth rate below zero for parameters typical of
laser-plasma coronas. As an example, the growth rate is
plotted in Fig. 3(d) as a function of the background
temperature scale length for the conditions T0 ¼ 3 keV,
ne ¼ 1027 m−3, Z ¼ 50, l̂T ¼ ly, and Ñ ¼ Ñðl̂T=4Þ=2; this
represents a conservative estimate for the effect of Nernst
damping, because in realistic scenarios the background
temperature scale length l̃T is shorter than the transverse
perturbation scale length ly, and therefore Nernst convec-
tion is more rapid. The efficient damping by Nernst across a
wide range of ICF-relevant temperature scale lengths,
indicated in Fig. 3(d), supports the conclusion drawn from
the kinetic simulations.
We note a promising platform for the study of magnet-

ized transport instabilities could involve the heating of a
uniform gas by radiation from a pulsed-power device. By
using a gauze, the wavelength of the heat source could be
varied and magnetic field strength measured as a function
of this wavelength and gas density [29].
In summary, we have performed 2D Vlasov-Fokker-

Planck simulations of magnetic field generation by the
Biermann battery (and, more generally, the baroclinic
mechanism) in laser-plasma interactions relevant to inertial
fusion, including the first numerical study of field gen-
eration by the thermomagnetic instability [6,7]. Contrary to
classical expectation, we find that the ability of self-
generated magnetic fields to affect transport is strongly
inhibited by three key mechanisms: (i) a reduction of the
baroclinic (Biermann) rate of field generation in nonlocal
conditions; (ii) the convection of fields out of the generation
region by the generalized Nernst effect; and (iii) the
relatively small size of magnetic field regions compared
to the Larmor radius of the heat-carrying electrons (“mag-
netic nonlocality”). Crucially, these mechanisms stabilize
the thermomagnetic instability in conditions relevant to
laser fusion, and significantly reduce the effect of magnetic
fields on transport in coronal plasmas.
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