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Self-organized synchronization is a ubiquitous collective phenomenon, in which each unit adjusts their
rhythms to achieve synchrony through mutual interactions. The optomechanical systems, due to their
inherently engineerable nonlinearities, provide an ideal platform to study self-organized synchronization.
Here, we demonstrate the self-organized synchronization of phonon lasers in a two-membrane-in-the-
middle optomechanical system. The probe of each individual membrane enables us to monitor the real-time
transient dynamics of synchronization, which reveals that the system enters into the synchronization regime
via a torus birth bifurcation line. The phase-locking phenomenon and the transition between in-phase and
antiphase regimes are directly observed. Moreover, such a system greatly facilitates the controllable
synchronous states, and consequently a phononic memory is realized by tuning the system parameters. This
result is an important step towards the future studies of many-body collective behaviors in multiresonator
optomechanics with long distances, and might find potential applications in quantum information
processing and complex networks.
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Synchronization plays an important role in many aspects
of modern science. A well-recognized example in laser
physics is the so-called injection locking [1,2]. It has also
shown great potential in various laser-based technologies.
Synchronization of optical clocks is essential in ultraprecise
navigation, sensing, and time keeping [3]. Synchronization
of semiconductor laser arrays can lead to ultrahigh coherent
power [4,5]. Synchronization of chaotic lasers is useful in
chaos-based secure communications [6,7], and synchroni-
zation of superradiant lasers provides extremely high purity
of frequency [8].
A phonon laser is the counterpart of a conventional or

photon laser. The lasing is defined as themechanical oscillator
is driven into the self-oscillation regime when the driving
power is above a threshold and the effective damping rate
becomes negative. This field with a single optomechanical
oscillator has been extensively studied in the last few years
[9–11]. As the development of nano- and microfabrication,
multimechanical oscillators recently become an active field.
The realization of synchronous phonon lasers in such systems
will not only find applications in quantum communications
and complex networks, but also can explore many rich and
fascinating nonlinear and quantum phenomena, such as
chaotic and quantum synchronization [12–15]. Promising
candidates to study synchronization of phonon lasers are
multimode and multiresonator optomechanical systems, e.g.,
coupled microdisks [16], optomechanical crystals [17–19],
hybrid microwave circuits [20,21], and multiple dielectric
membranes in a Fabry-Perot cavity [22–29].
Recently, synchronization has been observed in the

coupled microdisks and nanomechanical oscillators with

an optical racetrack cavity [30–33]. However, there is no
such demonstration for the multimembrane system. Self-
organized synchronization of phonon lasers remains to be
largely explored experimentally. Especially, dynamic con-
trol of phonon lasers via synchronization, which could be
an essential ingredient for phonon-photon hybrid circuits,
has remained elusive. In this work, we investigate the
synchronization effect in an optomechanical system of two
long-distance dielectric membranes interacting with one
common intracavity field through dynamical backaction.
We demonstrate the synchronous phonon lasers with the
evidence of frequency entrainment, as well as the direct
observation of phase locking. The real-time dynamics is
studied by monitoring the motions of two membranes
individually and simultaneously. Consequently, the route to
synchronization is experimentally investigated in an opto-
mechanical system for the first time. The transition between
the regimes of in-phase and antiphase synchronization is
also observed. Moreover, synchronization is utilized as a
useful resource to control the synchronous frequency by
tuning the system parameters and this characteristic is
exploited to realize a phononic memory, which could be
straightforwardly extended to multichannel phononic
switches and logic gates.
The schematic of the experimental setup is shown in

Fig. 1. Two stoichiometric silicon nitride membranes
separated by 6 cm are placed inside a Fabry-Perot cavity.
The driving beam interacts with two membranes simulta-
neously and is blue detuned to the cavity resonance, which
provides mechanical gain. The ratio between the light
coupled into the cavity and the total input light is ∼8%. The
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cavity transmission of the driving beam is detected by a
photodetector (D2) and the signal is sent to a spectrum
analyzer. The locking beam is used to stabilize the
cavity resonance, which is monitored by the photodetector
D1. Two weak probe beams bypass the cavity and are
used to measure the motions of each membrane individu-
ally (see Supplemental Material [34] for more details). We
focus on the vibrational (3, 3) modes of two membranes,
which are nearly degenerate with eigenfrequencies
ω1;2 ∼ 2π × 1.2 MHz. Piezos are used to precisely control
the eigenfrequencies of membranes, hence the frequency
difference of membranes Δω ¼ ω1 − ω2 can be either zero
(i.e., completely degenerate) or as large as a few kilohertz
[29,35]. In the remainder of this Letter, we denote that
membrane 1 is the one with larger frequency and membrane
2 has smaller frequency.
The coupling between the membranes in such a two-

membrane-in-the-middle system is through interacting with
a common intracavity field, rather than direct mechanical
contact. The interaction Hamiltonian of this system can be
written as [25,26]

Hint ¼ −ℏâ†âðG1q̂1 þ G2q̂2Þ; ð1Þ

where â† (â) is the creation (annihilation) operator of cavity
field, Gi (i ¼ 1; 2) is the optomechanical coupling strength,
and q̂i (i ¼ 1; 2) is the membrane position operator.
The equations of motion in the classical and mean field

limit can thus be given by

_α ¼ ½−κ=2þ iðΔþ G1q1 þG2q2Þ�αþ Ein; ð2Þ

m1q̈1 ¼ −m1ω
2
1q1 −m1γ1 _q1 þ ℏG1jαj2; ð3Þ

m2q̈2 ¼ −m2ω
2
2q2 −m2γ2 _q2 þ ℏG2jαj2: ð4Þ

Here α ¼ hâi is the complex light amplitude and q1;2 ¼
hq̂1;2i are the amplitudes of membrane oscillators. m1;2 are
the effective masses of membranes. γ1=2π ¼ 0.53 and
γ2=2π ¼ 0.61 Hz are the mechanical damping rates.
Δ=2π ¼ 2 MHz is the detuning of the driving laser from
the cavity resonance. κ=2π ¼ 2 MHz is cavity decay rate.
Ein denotes the driving field amplitude.
The phonon lasing and synchronization transitions are

illuminated in Fig. 2. At a relatively low driving laser
power, e.g., Pd ¼ 0.5 mW, the membranes oscillate ran-
domly due to thermal fluctuations. When the driving power
is increased, dynamical backaction amplifies the mechani-
cal motions. The phonon lasing threshold emerges when
the gain can compensate for the dissipations, and the
membranes oscillate coherently at their own eigenfrequen-
cies, e.g.,Pd ¼ 3 mW. When the driving power keeps
increasing and the second threshold appears [dashed line
in Fig. 2(a)], two membranes oscillate at the same fre-
quency, i.e., synchronization, as shown in Fig. 2(b), which
can be effectively described by the Kuramoto model [36].
The oscillation amplitude of membrane 2 decreases dra-
matically [Fig. 2(a)]. This is because the natural oscillation
at ω2 is suppressed and membrane 2 starts to oscillate at ω1

due to synchronization. Since the new oscillation frequency
(ω1) is not close to its intrinsic mechanical resonance (ω2),
the oscillation amplitude is much smaller compared to the
one at its natural frequency.
The dynamics of the synchronization transient process is

investigated in Fig. 3. Figures 3(a) and 3(b) present the time
evolution of two membranes’ motions, respectively. The
driving beam is abruptly switched on at t ¼ 0. When the

FIG. 1. Schematic diagram of the experimental setup. Two
membranes are placed inside an optical cavity. A weak locking
beam is used to stabilize the cavity resonance and a strong driving
beam provides mechanical gain. Two weak probe beams are
used for measuring the motions of two membranes separately.
Polarization beam splitter (PBS). D1 and D2 are the photo-
detectors for the cavity locking and cavity transmission meas-
urement, respectively.

FIG. 2. Phonon lasing and synchronization transitions. Ampli-
tudes (a) and frequencies (b) of membrane oscillators as a
function of driving power. The red circles and blue triangles
are the experimental data corresponding to membrane 1 and 2,
respectively. The lines are guides to the eye.
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time is long enough, two membranes are synchronized
and the oscillation amplitudes become stable. Typically,
the transient time gets shorter as the driving power becomes
larger. As one can see in the right panels of Figs. 3(a) and
3(b), the phase difference between two membrane oscil-
lators is a constant, which is close to π. This is the first
direct observation of phase locking between two self-
organized synchronous optomechanical oscillators.
Figures 3(c) and 3(d) depict the Fourier transform

spectra of membrane motions at different time. During
the transient process, membrane 1 oscillates at its own
eigenfrequency ω1 and the oscillation amplitude increases
[Fig. 3(c) and red curve i in Fig. 3(e)]. While membrane 2
oscillates at two frequencies at the beginning, i.e., the
eigenfrequencies of itself (ω2) and membrane 1 (ω1, the
synchronous mode). As time evolves, the oscillation
amplitude at ω2 decreases [blue curve iii in Fig. 3(e)]
and the amplitude of synchronous mode increases [green
curve ii in Fig. 3(e)]. Eventually, the oscillation at ω2 is

suppressed and membrane 2 is fully synchronized to ω1

[Fig. 3(d)]. Figure 3(e) clearly illustrated this transient
dynamics. Such observations indicate that the system enters
into the synchronization regime via the torus birth bifurca-
tion line instead of the saddle-node bifurcation line [37]. It
is worth noticing that the process happening on membrane
2 is very similar to the mode competition phenomenon
in a multimode phonon laser [38]. By choosing different
system parameters, the transient dynamics can be much
more complicated, which requires further investigation.
Figure 3(f) shows the phase difference as a function of
driving power. As one can see in Fig. 3(f), the system can
be synchronized not only antiphase (π phase difference),
but also in-phase (0 phase difference), which indicates two
separate regimes in the phase diagram, and the transition
between the two regimes can be simply achieved by tuning
the driving power.
Such multimembrane optomechanical systems could

study a variety of synchronizations. Figure 4 shows the

FIG. 3. Transient dynamics of self-organized synchronization. (a) and (b) The real-time evolution of two membranes’ motions during
the transient process. (c) and (d) The Fourier transform spectra of the traces shown in (a) and (b), respectively, at different times
(specified by different colors). The frequency is zeroed at ω1, which is 1.19728 MHz. (e) Time evolution of amplitudes of membrane
oscillators. The red curve i presents the amplitude of membrane 1 at ω1. The green curve ii and blue curve iii are the amplitudes of
membrane 2 at ω1 and ω2, respectively. The curves ii and iii are multiplied by a factor of 2 for clarity. The driving power is 20 mW in
(a)–(e). (f) In-phase to antiphase transition. The phase difference between two membrane oscillations is plotted at different driving
powers.
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frequency entrainment for two nonidentical membrane
oscillators at three different situations. By changing the
system parameters, e.g., G1, G2, and Δω, two membrane
oscillators can be synchronized at different frequencies.
Figures 4(d)–4(f) show the cases when two membranes are
synchronized at ω1, ω2, and in the between, respectively.
Figures 4(a)–4(c) are the corresponding unsynchronized
situations when the driving power is below the synchro-
nization threshold. The blue, green, and red curves in Fig. 4
describe the power spectra of cavity output field and
individual membranes’ oscillations (measured by probe 1
and 2), respectively. The reason why the system reaches to
different synchronous frequencies at various conditions in
Fig. 4 can be qualitatively understood as that the frequency
of the weaker oscillator is more likely to be pulled to the
stronger one [2].
The controllability of the synchronization at different

frequencies (as shown in Fig. 4) is used to realize a
phononic digital memory, i.e., no phase coherence is
associated. A controllable nanomechanical memory is
essential for a possible nanomechanical computer, and
has been realized in various systems [39–42], mostly based
on mechanical bistability due to nonlinearities. Here
synchronization is utilized as the operational mechanism.
By properly choosing the parameters, the output of the
system shows different power spectra. As one can see in
Figs. 5(a) and 5(b), the power spectra of cavity transmission

show oscillations at 1.1976 and 1.1959 MHz, which
correspond to the states “1” and “0” for a bit, respectively.
By periodically modulating the optomechanical coupling
strength of one membrane, the oscillation frequency of the
system periodically switches, as shown in Fig. 5(c). The
timescale is on the order of seconds due to the long
coherence time of the membranes. The transient time
can be shortened by simply increasing the driving power,
or maybe a more sophisticated technique, such as short-
cuts [43].
In conclusion, we have demonstrated the self-organized

synchronization of two membranes in an optomechanical
Fabry-Perot cavity. In contrast to the previous experimental
studies which are based on stable long-term measurements
[30–33], our system enables to probe each membrane in
real-time and individually. Consequently, the phase locking
effect is directly observed, and the real-time dynamics of
the transient process is comprehensively studied, which
might provide a new strategy to study the transient
dynamics in the phase transition of self-organized pattern
formation and superradiance in out-of-equilibrium and
complex systems [44]. Moreover, the system provides
great freedom to control the optomechanical coupling.
The long-range interaction and dynamics can be precisely
tailored by properly tuning the system parameters. As the
first step to multistate switching [45] and logic gates
[46,47], the phononic memory is realized by dynamically
controlling the coupling strength. Although the effect we
have studied is classical, the setup provides a flexible
platform for studying quantum collective phenomena and

FIG. 4. Frequency entrainment of two nonidentical membrane
oscillators. (a)–(c) Membranes are not synchronized when the
driving power is below the synchronization threshold with regard
to the three different situations. (d)–(f) Membranes are synchron-
ized at the eigenfrequencies of membrane 1 (d) and membrane
2 (e), and the case when the synchronous frequency is in between
two eigenfrequencies (f). The blue, green, and red curves
represent the power spectra of the cavity output field and two
probe beams, respectively. The curves are shifted vertically
for clarity. The green curve in (f) is multiplied by a factor of
2. G1=2π ¼ 1.92 and G2=2π ¼ 2.29 kHz=pm for (a) and (d).
G1=2π¼ − 0.84 and G2=2π ¼ 1.57 kHz=pm for (b) and (e).
G1=2π ¼ 1.23 and G2=2π ¼ 2.40 kHz=pm for (c) and (f).

FIG. 5. Phononic digital memory. (a) and (b) The power spectra
of cavity transmission showing oscillations at ω1 ¼ 1.1976 and
ω2 ¼ 1.1959 MHz when G1 is 1.9 and 0.4 kHz=pm, respec-
tively. (c) The power spectrum (the lower panel) shows that the
system can switch between ω1 and ω2 by dynamically modu-
lating G1 (the upper panel) with G2 ¼ 1.6 kHz=pm.
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classical-to-quantum transitions, which provides a perspec-
tive that synchronization can be a novel tool for quantum
manipulation and quantum information processing.
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