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Recurrent neural networks (RNN) are powerful tools to explain how attractors may emerge from noisy,
high-dimensional dynamics. We study here how to learn the ∼N2 pairwise interactions in a RNN with N
neurons to embed Lmanifolds of dimensionD ≪ N. We show that the capacity, i.e., the maximal ratio L=N,
decreases as j log ϵj−D, where ϵ is the error on the position encoded by the neural activity along eachmanifold.
Hence, RNN are flexible memory devices capable of storing a large number of manifolds at high spatial
resolution. Our results rely on a combination of analytical tools from statistical mechanics and randommatrix
theory, extending Gardner’s classical theory of learning to the case of patterns with strong spatial correlations.
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How sensory information is encoded and processed by
neuronal circuits is a central question in computational
neuroscience. In many brain areas, the activity of neurons σ
is found to depend strongly on some continuous sensory
correlate r; examples include simple cells in the V1 area of
the visual cortex coding for the orientation of a bar presented
to the retina, and head direction cells in the subiculum or
place cells in the hippocampus, whose activities depend,
respectively, on the orientation of the head and the position
of an animal in the physical space. Over the past decades,
continuous attractor (CA) neural networks have emerged as
an appealing concept to explain such findings, more
precisely, how a large and noisy neural population can
reliably encode “positions” in low-dimensional sensory
manifolds, σ ¼ ΦðrÞ, and continuously update their values
over time according to input stimuli [1–5].
Models for the embedding of a CA in recurrent neural

network (RNN) generally assume that, after a Hebbian-like
learning phase, the connectionWij between the neurons i, j
having their place fields centered in positions ri and rj,
takes value

Wij ¼ wðjri − rjjÞ; ð1Þ
where j·j denotes the distance in the sensory space. If w is
sufficiently excitatory at short distances and inhibitory at
long ones, a bump state spontaneously emerges, in which
active neurons tend to code for nearby positions in the
sensory space. Weak external inputs suffice to move the
bump and span the D-dimensional manifold of all possible
positions r [Fig. 1(a)]. This mechanism was observed in the
ellipsoid body of the fly, where a bump of activity points
towards the heading direction [6]. Indirect evidences for the
presence of CA have been reported, e.g., in the grid-cell
system [7] and in the prefontal cortex [8].

Hebbian connections (1) can be modified to embed in
the same network of N neurons multiple, unrelated CAs
[Fig. 1(a)], such as multiple hippocampal spatial maps
corresponding to different environments [9] or contextual

(a)

(b)

FIG. 1. (a) A recurrent network withN neurons and connectivity
matrix W (top left) generates high-dimensional activity configu-
rations attracted to multiple low-dimensional manifolds (right); on
each manifold, we require to memorize p points (bottom left, red
crosses),whose separation defines the spatial resolution ϵ. (b) Place
fields (PF) ofN ¼ 5 neurons in twomaps, out of the three shown in
panel (a). Each color identifies one neuron; the corresponding PF
define the regions (with periodic boundary conditions) in the maps
in which the neuron is active. The table lists, for each map, p ¼ 3
activity patterns corresponding to the marked points.
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situations [10]. Assuming each one of the L maps con-
tributes equally to the learning process, connections take
the form [11]

Wij ¼
XL
l¼1

wðjrli − rlj jÞ; ð2Þ

where rli is the center of the place field of neuron i in
environment l [Fig. 1(b)]. Theoretical calculations show
that a bump state can exist (in any map) as long as
L < αcN, where αc defines the critical capacity that can
be sustained by the network [12,13].
There are, however, serious practical and conceptual

issues with the current theoretical understanding of multi-
ple CAs based on Eq. (2). First, as soon as L ≥ 2, the
activity bump gets stuck in some preferred locations in
the retrieved map due to the interferences coming from the
other L − 1 nonretrieved maps [14]. In other words, rule (2)
does not define truly CAs, as large barriers oppose the
motion of the bump along the map [15]. The spatial error ϵ
with which the environment is encoded, defined as the
average discrepancy between any initial position r for the
bump and the closest stable position in which it finally
settles after neural relaxation dynamics, becomes quite
large as L increases [Fig. 2(a)]. The issue of spatial
resolution is also unclear from a theoretical point of view.
Capacity calculations [12,13] require that a bump can form
in any of the L maps, in at least one position: they offer no
guarantee about the existence of other memorized posi-
tions, and, more generally, about the value of ϵ.
Second, the values of the critical capacity αc with rule (2)

are generally quite low. It is reasonable to expect that the
optimal storage capacity could be much higher: a ∼15-fold
increase was found from the Hebb-rule critical capacity,
≃0.14 [17], to the optimal capacity, αc ¼ 2 [18] in the case
of 0-dimensional attractors, corresponding to the Hopfield
model [19]. Optimal learning could also provide detailed

insights on the statistical structure of the neural couplings
Wij, which could be compared to the physiological dis-
tribution of synaptic connections [20].
In this Letter, we present a theory of optimal storage of

multiple quasicontinuous maps with prescribed spatial
resolution in a RNN with N binary neurons (σi ¼ 0, 1)
and real-valued, oriented connections Wij. A map in this
context is defined through the set of the input (place) fields
of the N neurons, each covering a volume fraction ϕ0 of the
D-dimensional cube [Fig. 1(b)]. In practice, the centers r̂li
of the PFs are uniformly drawn at random in the cube,
independently of each other, in all l ¼ 1…L maps. For
each map l, we draw uniformly at random p positions r̂l;μ,
μ ¼ 1…p, and collect the p corresponding patterns of
activity: the neuron i is active (σl;μi ¼ 1) if the distance
jr̂l;μ − r̂li j is smaller than the PF radius rc, and silent
(σl;μi ¼ 0) otherwise [Figs. 1(a) and 1(b)].
In order to learn these patterns we use support vector

machines (SVM) with linear kernels and hard margin
classification (Supplemental Material [16], Sec. I. B)
[21–23]. We train N SVM, one for every row i in the
coupling matrix Wij, in which we consider the neuron i as
the output and the other N − 1 neurons jð≠ iÞ as the inputs
[24]. The training set fσl;μi g is common to all SVM. Once
learning is complete, we normalize each row of the
coupling matrix to

P
jð≠iÞW2

ij ¼ 1. SVM find the coupling
matrix W maximizing the stability of the stored patterns,

κ ¼ max
W

min
fi¼1…N;l¼1…L;μ¼1…pg

�
ð2σl;μi − 1Þ

X
jð≠iÞ

Wijσ
l;μ
j

�
:

ð3Þ
SVM couplings share some qualitative features with

their Hebbian counterparts. First, the couplings Wij are
correlated with the distances dlij ¼ jrli − rlj j between the
PF centers of the neurons i and j in the different maps l;
see Supplemental Material [16], Sec. I. C. Second, when
simulating the trained network with simple rules for
updating the neuron activities (Supplemental Material
[16], Sec. I. E), the activity bump forms and diffuses within
a map, and occasionally jumps to other maps [11,15,25].
However, with the maximal-stability learning rule, the
spatial error ϵ can be tuned at will by varying p, see
Fig. 2(a). For a fixed p, ϵ remains remarkably stable as the
load increases until its critical value is reached. This is in
sharp contradistinction with the Hebb rule case, for which ϵ
quickly increases with the number of maps. The p patterns
form a discrete approximation of the map, with average
spatial error scaling as ϵ ¼ p−1=D, i.e., as the typical
distance between neighboring points [Figs. 1(a) and 2(b)].
The optimal stability κ (3) is shown in Fig. 3 as a

function of the load α ¼ L=N and of the number p of
prescribed fixed points; it is much higher than the maximal
stability achievable with rule (2) after optimization over the

(a) (b)

FIG. 2. (a) Spatial error ϵ vs number L of two-dimensional
maps in a network of N ¼ 1000 neurons. Black: rule (2), with
wðdÞ ¼ e−d=0.01 þ w0, where w0 < 0 enforces a fraction ϕ0 ¼ 0.3
of active cells. Colors: SVM results for different numbers p of
prescribed positions. Line widths show the error bars; see Supple-
mentalMaterial [16], Sec. I. E for details about the calculation of ϵ.
(b) Spatial error ϵ vs number p of positions in a network of
N ¼ 1000 neurons storingL ¼ 5maps, in dimensionsD ¼ 1, 2, 3.
Lines show the expected scalings ϵ ∼ p−1=D in log-log scale.
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interaction kernel w; see Supplemental Material [16],
Sec. I. D. As expected, κðα; pÞ is a decreasing function
of α and p: increasing the number of maps or enforcing
finer spatial resolution reduces the stability. The value of
the load at which κðα; pÞ vanishes defines the critical
capacity αcðpÞ, that is, the maximal load sustainable by the
network as a function of the required spatial resolution.
Figure 3 (inset) shows that αcðpÞ decreases proportionally
to 1=p at low p, and then much more slowly as p grows.
For small p, all L × p patterns are roughly independent,
and we have αcðpÞ ≃ ½αcð1Þ=p�, where αcð1Þ is the
capacity of the perceptron with independent, biased pat-
terns having a fraction ϕ0 of active neurons [18]. As p gets
large, substantial redundancies between the p patterns
within a map appear, as nearby positions define similar
patterns [Fig. 1(b)], and the capacity is expected to
decrease less quickly with p. The cross-over takes place
at pc:o: ∼ 1=ϕ0 (Supplemental Material [16], Sec. I. D). The
nontrivial behavior of αcðpÞ when p ≫ pc:o: will be
characterized in the theoretical study below.
Gardner’s framework [18] can, in principle, be applied

to the optimal couplings corresponding to maximal stability
κ (3). Following standard calculations (Supplemental
Material [16], Sec. II. A [26]), we find that the maximal
load at fixed κ and p is given by

αcðκ; pÞ ¼ 1=min
m

hEpðR̂;Z; m; κÞiR̂;Z; ð4Þ

where the minimum is taken over m ¼ ϕ0

P
jð≠iÞWij. In

the formula above, h·i denotes the average over the vectors
R̂ ¼ ðr̂1;…; r̂pÞ of p positions r̂μ drawn uniformly at
random in the D-dimensional cube, and Z ¼ ðz1;…zpÞ
drawn from the multivariate centered Gaussian distribution
with R̂-dependent covariance matrix

Γμ;νðR̂Þ ¼ Γðjr̂μ − r̂νjÞ − ϕ2
0: ð5Þ

Here, ΓðdÞ is the overlapping volume between two PFs,
whose centers are at distance d from one another; hence,
Γð0Þ ¼ ϕ0. Function Ep in Eq. (4) is defined through

EpðR̂;Z;m;κÞ ¼ min
ftμ≥κþm;μ¼1…pg

Xp
μ;ν¼1

ðtμ − zμ − 2mΦðjr̂μjÞÞ

×Γ−1
μ;νðR̂Þðtν − zν − 2mΦðjr̂νjÞÞ; ð6Þ

where ΦðdÞ ¼ 1 if d < rc, 0 otherwise; rc is the radius of
the PF, i.e., the smallest number such that Γð2rcÞ ¼ 0.
In practice, computing αcðκ; pÞ from Eq. (4) is quite

involved from a numerical point of view, as it requires to
solve the p-dimensional semidefinite quadratic optimiza-
tion problem in Eq. (6), as well as to average over the
random vectors R̂ and Z. This can be accurately done for
small enough p, with results in excellent agreement with
the SVM simulations, see Fig. 3. Notice that, for p ¼ 1, our
calculation reproduces Gardner’s critical capacity αcð1Þ for
independent and biased patterns (Supplemental Material
[16], Sec. II. B). This is expected as spatial correlations
between patterns within a map appear when p ≥ 2.
Formula (4) seems, unfortunately, intractable for large p.

The intricate dependence on p, e.g., showing up through
the Gaussian correlations between the p random fields zμ in
Eq. (6), stems from the average (in each map l) over
the N PF centers frli g at fixed positions frl;μg. To avoid
introducing these correlations and having an explicit depend-
ence on the parameter p, we consider an alternative calcu-
lation scheme,where thep positions in eachmap are averaged
out, while keeping the L × N centers quenched. To further
simplify the calculation we neglect in the effective action all
terms of order ≥ 3 in the couplings Wij [27]; this Gaussian
approximation is expected to be exact in the large-p limit.
Details about the calculation canbe found in theSupplemental
Material [16], Sec. II. C. Within our quenched PF theory the
optimal load αcðκ; pÞ is the root of F defined through

Fðα;m;q;U;V; TÞ ¼ V

�
qþU −

m2

1− 4
gðUÞ þ 4U

�

þ T

�
1þUgðUÞ− 1

V

�

− αpðq−m2Þ
Z

∞

x
dz

e−z
2=2ffiffiffiffiffiffi
2π

p ðz− xÞ2;

ð7Þ

FIG. 3. Optimal stability κ as a function of the load α and the
numberp of positions. Dots, SVM results; dashed lines, Gardner’s
theory (4); dashed-dotted lines, quenched PF theory (7). Parameter
values: D ¼ 2, ϕ0 ¼ 0.3, N ¼ 1000 for SVM. Inset: αcðpÞ
decreases proportionally to 1=p (straight line) at low p, and much
more slowly for large p. Dots indicate results from SVM
(N ¼ 5000), averaged over 50 samples, see Supplemental
Material [16], Sec. I. D for details on the estimation of αcðpÞ;
the dot size indicates themaximal error bar. The dashed-dotted line
shows the predictions from the quenched PF theory.
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with x ¼ ðm − κÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq −m2

p
Þ. In Eq. (7), m ¼P

jð≠iÞð2Cij − ϕ0ÞWij, q ¼ P
j;kð≠iÞ WijCjkWik, and the

Lagrange multipliers U, V, T enforcing, respectively, the
normalization ofW and the definition of the order parameters,
are all chosen to optimizeF. C denotes theN × N multispace
Euclidean random matrix (ERM)

Cjkðfrli gÞ ¼
1

L

XL
l¼1

Γðjrlj − rlk jÞ; ð8Þ

with resolvent gðUÞ ¼ ð1=NÞTraceðUIdþ CÞ−1. While
ERM have been intensively studied in the literature [28],
superimpositions of ERMmixing up different spaces have not
been considered so far to our knowledge. The resolvent gðUÞ
can nevertheless be computed using tools from randommatrix
theory [29,30], and shown to be the solution of the implicit
equation

U ¼ 1

gðUÞ −
X
k≠0

αΓ̂ðkÞ
αþ gðUÞΓ̂ðkÞ ; ð9Þ

where the Γ̂ðkÞ’s are the components of the Fourier transform
of Γ on the D-dimensional infinite reciprocal cube.
Resolution of these equations gives access to κðα; pÞ, in

very good agreement with the numerical results obtained
with SVM (Fig. 3). Small deviations can, however, be
noticed and diminish with increasing p as expected. The
order parameters q and m are shown as functions of p in
Fig. 4, in good agreement with SVM results for large
pð≫pc:o:Þ. The value of p at which the confluence between
the results from the quenched theory and SVM takes place
is a decreasing function of the PF size ϕ0 (Supplemental
Material [16], Sec. II. D [31,32]) and of the map dimension
D (Supplemental Material [16], Sec. I. D).
Due to the explicit dependence of F on p in Eq. (7) the

asymptotic behaviour of the critical capacity can be
analytically determined in the large-p limit:

αcðpÞ ∼ AðDÞ ϕ
−ðD−1Þ
0

ðlogpÞD ðp → ∞Þ; ð10Þ

where the constant A is made explicit in Supplemental
Material [16], Sec. II. C. Equation (10) is our main result.
Informally speaking, the very slow decay of the critical
capacity with p (Fig. 3, inset) means that recurrent neural
nets can efficiently store multiple spatial maps, even at
high spatial resolution. More precisely, enforcing a strong
reduction of the spatial error, such as ϵ → ϵ2, results
in a moderate drop of the maximal sustainable load,
αc → αc=2D. In addition, the capacity is predicted to be
a decreasing function of the PF size in dimensions D ¼ 2,
3, but not in dimensionD ¼ 1. This asymptotic statement is
qualitatively corroborated by SVM results, even for mod-
erate values of p (Supplemental Material [16], Sec. I. D).
Many extensions of the current work can be contem-

plated. First, our theory can be easily generalized to the
case of spatial resolutions varying from map to map, by
substituting p with its average value over the maps in
Eq. (10). This suggests that the fraction of maps with finest
spatial resolution ϵ should not exceed ∼ϵD when ϵ → 0, in
order not to affect too much the critical capacity.
Second, it would be very interesting to understand how

much the scaling of αc in Eq. (10) is robust against the
choice of the parametrization ΦðrÞ of the manifolds. We
have shown that reducing the number of active neurons in
each map and allowing for variations in the sizes of the PFs
from neuron to neuron do not affect this scaling [30]. While
we have assumed here for the sake of simplicity that the
distribution of points was statistically uniform across
space, this need not be the case in practice. Experiments
have shown that spatial representations of environments are
enriched in place fields close to spots of interests (such as
water pots [33] or objects [34]) with respect to void regions.
Numerical simulations reported in the Supplemental
Material [16], Secs. I. D and I.E show that increasing
the density of prescribed positions in regions of the
physical space allows us to carve specific attractors in
the neural activity space, representing preferentially those
regions. This result is compatible with recent studies
establishing the link between PF distribution and behav-
ioral place preference [35]. Interestingly, our quenched PF
theory can be applied to any particular set of PF, not
necessarily homogeneously distributed over space; knowl-
edge of the PF characteristics, e.g., from experimental
measurements, allows us to determine the multispace
correlation matrix C in Eq. (8) and to make specific
predictions. A proof of principle of this approach is shown
in the Supplemental Material [16], Sec. II. D, where we
compare the couplings found with SVM and with our
quenched PF theory on synthetic data.
Third, the biological implications of our work remain to

be worked out. Several improvements should be first
brought in terms of biological plausibility. In particular
one should consider continuous rather than binary neurons,
explicitly distinguish excitatory and inhibitory neurons and
impose Dale’s law on the associated synapses, and take into

FIG. 4. Order parametersm (left) and q (right) vs p. Dots, SVM
results (N ¼ 2500) averaged over 50 samples; dashed-dotted
lines, quenched PF theory (7). Parameters: D ¼ 2, ϕ0 ¼ 0.3,
α ¼ 0.02 (top) and 0.05 (bottom), for which up to, respectively,
pc ≃ 2500 and pc ≃ 250 points can be memorized.
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account the sparse nature of synapses [36] and of place-cell
activity [9] observed in CA3. Border effects, known to be
important for hippocampal maps [37], should also be
considered instead of the simple periodic boundary con-
ditions assumed here. Finally, it would be very interesting
to study the dynamics of learning. As a preliminary
attempt, we consider in Supplemental Material [16],
Sec. I. F, an online version of the SVM learning algorithm
[38], and show that the number of presentations of the
patterns needed to stabilize a map is approximately propor-
tional to p. Studying plausible learning rules could ulti-
mately elucidate how the network progressively maturates
to account for more and more fixed points and eventually
defines a quasicontinuous attractor, as seems to be the case
during the first weeks of development in rodents [39].

We are grateful to A. Treves for useful discussions. This
work was funded by the Human Frontier Science Program
RGP0057/2016 grant.
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