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Echo chambers and opinion polarization recently quantified in several sociopolitical contexts and across
different social media raise concerns on their potential impact on the spread of misinformation and on the
openness of debates. Despite increasing efforts, the dynamics leading to the emergence of these phenomena
remain unclear. We propose a model that introduces the dynamics of radicalization as a reinforcing
mechanism driving the evolution to extreme opinions from moderate initial conditions. Inspired by
empirical findings on social interaction dynamics, we consider agents characterized by heterogeneous
activities and homophily. We show that the transition between a global consensus and emerging radicalized
states is mostly governed by social influence and by the controversialness of the topic discussed. Compared
with empirical data of polarized debates on Twitter, the model qualitatively reproduces the observed
relation between users’ engagement and opinions, as well as opinion segregation in the interaction network.
Our findings shed light on the mechanisms that may lie at the core of the emergence of echo chambers and
polarization in social media.
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The participatory character of political debates on online
social media [1] adds degrees of freedom to the self-
organization of public opinion formation [2]. The low cost
for engagement and the distributed architecture of com-
munication infrastructures have increased interaction rates
[3] and lowered barriers due to geographical distance or
social status [4]. Within the traditional models based on
constructive opinion dynamics [5], such unrestricted modes
of interaction would eventually lead to a consensus, even
on controversial issues.
However, this prediction is not always confirmed empir-

ically: heterogeneous and bimodal distributions of opinions
have been measured in political surveys [6,7], especially on
controversial issues like abortion or global warming [8,9].
We refer to situations in which the opinion distribution
is characterized by two well-separated peaks around
the neutral consensus as polarization. In social media,
such polarized communication networks were observed in
controversial debates ranging from political orientation
[10,11], to U.S. and French presidential elections [12],
to street protests [13]. If segregation in the opinion space is
reflected in interactions among users, echo chambers
emerge: situations in which one’s opinion resonates with
those of ones’ social contacts [14]. Echo chambers have
been quantified in several controversial debates on different
social media platforms [15–17] and may be related to the
spread of misinformation [18].
The contradiction between empirical observations and

predictions of classical models of opinion dynamics

questions the mechanisms that drive opinion polarization
and the formation of echo chambers. Previous modeling
approaches describe segregation of opinions by influence
based on similarity in the opinion space, either through a
confidence bound [19,20] or through homophily [21], the
preference of agents to interact with similar individuals
[22,23]. Another class of models describes polarization by
introducing repulsive interactions, in which users reject
opinions that differ from their own [24–26], but this
mechanism combined with homophily leads to a decrease
of polarization [27,28]. Although echo chambers and
modular network structures were previously also related
to homophily [29,30], several empirical features of social
networks characterized by echo chambers [15–17,30] and
their relations to opinion polarization have not been
addressed within a unified modeling framework.
In this Letter, we propose a simple model of opinion

dynamics that can capture this relation and reproduce two
empirical features frequently observed in polarized social
networks: (i) more-active users, strongly engaged in social
interactions, tend to show more-extreme opinions, and
(ii) the opinion expressed by a user and those expressed
by their neighbors in the social interaction network are
similar. The model introduces a mechanism by which
agents sharing similar opinions can mutually reinforce
each other and move toward more-extreme views, thus
describing a radicalization dynamics, also known as group
polarization in social psychology [31,32]. Alongside,
opinion states are coupled to the underlying time-varying
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network of social interactions by homophily [33,34]. While
the convergence toward a global consensus is retained, the
introduction of opinion reinforcement and homophily leads
to the emergence of metastable polarized states. The
transition between consensus and radicalization dynamics
is analytically characterized on the basis of the interplay
between social influence and the controversialness of the
topic discussed.
Let us consider a system of N agents. Each agent i is

characterized by a one-dimensional opinion variable
xiðtÞ ∈ ½−∞;þ∞�. The sign of xi, σðxiÞ, describes the
agent’s qualitative stance towards a binary issue of choice
(e.g., the preference between two candidates). The absolute
value of xi, jxij, quantifies the strength of this opinion, or
the conviction, with respect to one of the sides: the larger
jxij, the more extreme the stance of agent i. We assume that
the opinion dynamics is solely driven by the interactions
among agents, and describe it by a system of N coupled
ordinary differential equations,

_xi ¼ −xi þ K
XN

j¼1

AijðtÞ tanhðαxjÞ; ð1Þ

where K > 0 denotes the social interaction strength among
agents and α > 0 controls the shape of the sigmoidal
influence function taken to be tanhðαxÞ. Its odd nonlinear
shape guarantees that an agent j influences others in the
direction of its own opinion’s sign, σðxjÞ, that this influence
increases monotonically with the agent’s conviction jxjj,
and that the social influence of extreme opinions is capped,
as suggested by experimental findings [35]. Similar odd
and tunable functions have previously been used to model
nonlinear gain functions in mean-field models of neural
systems, to study chaotic dynamics [36] or the effects of
gain on attention and learning [37].
According to Eq. (1), the opinion of an agent i changes

depending on the aggregated inputs from their neighbors.
This mechanism builds on the idea of informational
influence theory [38] for the phenomenon of group
polarization, where agents with moderate opinions may
become extreme while interacting in a group [31]. The
neighbors of agent i are determined by the temporal
adjacency matrix AijðtÞ, with AijðtÞ ¼ 1 if there is input
from agent j to agent i at time t, AijðtÞ ¼ 0 otherwise.
Information flow on social media is in general asymmetric,
with the degree of asymmetry depending on the social
media platform under consideration. While social inter-
actions are initiated asymmetrically, they may easily gen-
erate feedback. Hence, we consider directed interactions
that may be reciprocated with a certain probability r. When
agent i establishes a connection to another agent j, agent j
will update its opinion, but agent i will do the same only if
the interaction is reciprocated.
For a reciprocal interaction between i and j, we

distinguish two fundamentally different situations, depend-
ing on the signs of their opinions σðxÞ. If the agents share the

same stance [σðxiÞ ¼ σðxjÞ], the interaction will cause an
increase of both convictions and hence reinforce opinions, a
mechanism we refer to as radicalization dynamics. On the
contrary, for opposing stances [σðxiÞ ¼ −σðxjÞ], opinions
tend to converge. Note that we model opinion dynamics as a
purely collective, self-organized process without any intrin-
sic individual preferences. Hence, the opinions of agents
lacking social interactions decay toward the neutral state.
The parameter α tunes the degree of nonlinearity

between an agent’s opinion and the social influence they
exert on others. For small α, the social influence of
moderate individuals on other peers is weak. For large
α, by contrast, even agents with moderate opinions can
already exert a strong social influence on others. The limit
of α → ∞, with tanhðαxÞ → σðxÞ, corresponds to a binary
vote of maximal social influence. Therefore, the parameter
α is interpreted as the controversialness of the issue.
Empirically, it has been shown that controversy is an
important factor driving the emergence of polarization
and echo chambers in debates on online social media [39].
The contact pattern among agents, sustaining the opinion

dynamics, represents social interactions which are known
to evolve in time [40] and is coded in AijðtÞ. Following
empirical observations, we model the interaction dynamics
as an activity-driven (AD) temporal network [41–44],
differently from previous modeling efforts proposing sim-
ilar mechanisms on static graphs [45]. Here, each agent i is
characterized by an activity ai ∈ ½ε; 1�, representing their
propensity to contact m distinct random other agents.
Activities are extracted from a distribution FðaÞ typically
assumed to follow a power law, FðaÞ ∼ a−γ , as measured in
empirical data [41,43]. The set of parameters (ε, γ, m) fully
encodes the basic AD dynamics. While in the original AD
formulation agents establish connections by random uni-
form selection, we assume here that interactions are ruled
by homophily [22,23]. To this end, the probability pij that
an active agent i will contact a peer j is modeled as a
decreasing function of the distance between their opinions,

pij ¼
jxi − xjj−βP
jjxi − xjj−β

; ð2Þ

where the exponent β controls the power law decay of the
connection probability with opinion distance. Note that the
parameter β may include various homophilic effects in
interactions, both endogeneous (due to the intrinsic behav-
ior of agents) and exogeneous (i.e., due to the algorithms of
social media platforms [27]).
Here, we focus on a regime in which social interactions

evolve much faster than opinions, like it is reasonable to
assume for online social media. Attitude change, indeed,
is known to be slow, especially regarding important or
controversial topics [46]. This yields a clear timescale
separation between the network’s and opinion dynamics.
Specifically, we choose to numerically integrate Eq. (1)

with dt ¼ 0.01, while the temporal network AijðtÞ is
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updated at each integration step. In the Supplemental
Material [47] we give a detailed description of our
numerical algorithm. In the following we discuss the
behavior of the model as a function of the social interaction
strength K, the controversialness α, and the homophily
exponent β. In our simulations we use a system size of
N ¼ 1000 agents. For each simulation we initialize the
opinions uniformly spaced on the interval xi ∈ ½−1; 1�, set
the AD parameters to m ¼ 10, ϵ ¼ 10−2, and γ ¼ 2.1, and
fix the reciprocity parameter to r ¼ 0.5, where not differ-
ently indicated. In Ref. [47] we show that the obtained
results are robust with respect to r, as well as to asymmetric
initial conditions in the opinion distribution.
We identify three qualitatively different dynamical

regimes. For small values of social influence strength K
and controversialness α, a neutral consensus is reached, in
which the opinions of all agents converge toward zero; see
Fig. 1(a). Larger values of α and/or K destabilize the
consensus state and give rise to radicalization. These are
situations in which agents’ opinions do not converge, are
widely spread, and may reach values far outside of the
initial opinion interval. For such cases, the dynamics of the
system strongly depends on how active agents choose their
interaction partners. In the absence of homophily (β ¼ 0),
when agents pick their interaction partners uniformly at
random, all opinions will be directly absorbed by one of the
two sides, as shown in Fig. 1(b). The introduction of
homophily (β > 0) drastically changes this picture: driven
by repeated interactions with like-minded individuals,
agents reinforce their opinions and segregate into two
groups on opposite sides of the neutral consensus, as
shown in Fig. 1(c). In this scenario, a polarized state
characterized by a bimodal distribution of opinions
emerges [see Fig. S1(b) in Ref. [47] ], as observed

empirically [11,12,17,48–50] and in modeling studies
[51,52]. The polarized state in our model is metastable
and (for moderate values of β) eventually turns to a one-
sided radicalized state. Its lifetime, however, increases at
least exponentially with the strength of homophily β, up to
a point where the destabilization becomes numerically
inaccessible (see Fig. S2 of Ref. [47]).
The transition from neutral consensus to radicalization is

depicted in Fig. 2 in the K-α plane, where the color encodes
the absolute value of the final average opinion,
jhxfij≡ jN−1P

i xiðtfinalÞj. In the long-term regime, the
value of jhxfij identifies the transition between regions
exhibiting a stable neutral consensus, jhxfij ¼ 0 (dark
purple), characterized by small values of K and α, and
regions where radicalization emerges and becomes
stronger, jhxfij > 0 (color coded blue to yellow), obtained
for increasing K and/or α. In the limit of fast switching
interactions, this transition can be captured within a mean-
field approximation. Neglecting homophily (β ¼ 0) leads
to the following analytical expression for the critical
controversialness (see [47] for details),

αc ≃
1

ð1þ rÞKmhai ; ð3Þ

for which the neutral consensus becomes unstable and
radicalized states emerge. It depends inversely on the social
influence strength K, the number of contacts per active
agent m, the average activity hai, and a factor (1þ r)
accounting for the reciprocity of the network. Depicted as
the dashed line in Fig. 2, it still captures the transition for
moderate values of β.
We now contrast the behavior of our model with three

different datasets of polarized debates on Twitter, analyzed
in Ref. [15], containing tweets on specific topics of
discussion, known to be politically controversial: gun

FIG. 2. Transition from consensus to radicalization dynamics.
Absolute values of the average final opinions jhxfij in the K-α
phase space for β ¼ 0.5 and r ¼ 0.5. In the dark region, the
system approaches a neutral consensus, while in the brighter
areas the population undergoes radicalization dynamics which
become more pronounced for increasing values of K and/or
α (color code).

(a)

(b)

(c)

FIG. 1. Temporal evolution of the agents’ opinions. (a) Neutral
consensus for which all opinions converge to zero (α ¼ 0.05,
β ¼ 2). (b) (One-sided) radicalization (α ¼ 3, β ¼ 0). (c) Opinion
polarization, in which opinions split into two opposite sides
(α ¼ 3, β ¼ 3). Social interaction strength and reciprocity were
set to K ¼ 3 and r ¼ 0.5, respectively. Positive [negative]
opinions σðxiÞ > 0 [σðxiÞ < 0] are colored in blue [red]. Note
different scales on the y axis.
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control, Obamacare, and abortion. The datasets have been
built along two main features: (i) the political orientation of
users and (ii) their social interaction network. Each user is
characterized by their political leaning, based on estab-
lished political leaning scores of various news organiza-
tions (e.g., New York Times or Fox News), ranging from
very conservative to very liberal [53]. Specifically, the
political leaning score xi ∈ ½−1;þ1� of user i (equivalent to
xi in the model) is obtained by considering the set of tweets
posted by user i that contain links to news organizations of
known political leaning. Moreover, for each dataset, the
social network of interactions among the users is recon-
structed, so that there exists a directed link from node i to
node j if user i follows user j. As the datasets confirm the
presence of political polarization and echo chambers in
online social media, we compare them with our model
using r ¼ 0.65, which is close to the empirically measured
reciprocity values; see Ref. [47] for details on the data.
The data on xi yield the distributions of expressed

opinions PðxÞ, which show a bimodal shape across all
three considered datasets [see Fig. S1(a) in Ref. [47] ]. Even
though the method used to infer users’ opinions can differ
(e.g., likes on Facebook pages [18], Twitter hashtags [17],
up votes to Youtube videos [54], or political leaning of
media linked in tweet messages [39]), the shape of the
opinion distributions across diverse topics and different
online social media platforms looks similar. For sufficiently
large values of K, α, and β their shapes are qualitatively
well reproduced by our model, cf. Ref. [47].
A striking feature evident in different empirical datasets

of polarized debates is a clear association between the
engagement of users in the discussion and their convic-
tions: more-active users tend to show more-extreme opin-
ions. For the Twitter data analyzed here, we asses the
activity of a user as the fraction of tweets containing links to
news organizations of known political leaning, a rationale
derived from the original activity potential definition [41].
Figure 3(a) shows the average engagement, or activity a,

of users as a function of their opinions x. For all three topics
under consideration, the engagement rises toward the
extremes of opinion space. It is important to note that
differently defined user activity and opinion, such as the
number of likes on Facebook pages tagged in different
classes, shares of political content on Facebook [53], or
tweet rates of users classified according to the hashtags they
use [17], give rise to the same functional relationship. This
characteristic U-shaped relation is well reproduced by our
model; see Fig. 3(b) (shown for different parameters in
Fig. S3 in Ref. [47]). Within our model the finding suggests
that while most users have low activities and opinions close
to the neutral consensus, some very active users take on
more-extreme opinions, since their opinions are reinforced
by interactions with sufficiently like-minded peers.
Echo chambers are identified by the correspondence

between the distribution of opinions in the population and

the topology of the interaction network. Hence, users are
more likely to connect to peers sharing similar opinions,
which fosters information exchange among like-minded
individuals. On a network level, this translates into a
correlation between the opinion of a user i, xi, and the
average opinion of their nearest neighbors, hxiiNN ≡
k−1i

P
j aijxj [17], where aij represents the (static) adja-

cency matrix of the aggregated interaction network and
ki ≡P

j aij defines the degree of node i. Figure 4 shows

FIG. 3. Activity vs opinion. (a) Average activity hai of users as
a function of their political leaning x, for three empirical datasets.
(b) Activity-opinion density plot of 103 polarized opinion states
for K ¼ 2, α ¼ 3, β ¼ 1, and r ¼ 0.65. The colors encode the
value of ρða; xÞ which is normalized with respect to N.

(a) (b)

(c) (d)

FIG. 4. Echo chambers. Contour maps for the average opinion
of the nearest neighbors hxiNN against a user’s opinion x, for 200
simulations of the radicalization model with K ¼ 2.5, α ¼ 4.5,
β ¼ 2, and r ¼ 0.65 (a) and three different datasets (b)–(d).
Colors represent the density of users: the lighter the color, the
larger the number of users. The marginal distribution of opinions
PðxÞ and average opinions of the nearest neighbor PNNðxÞ are
plotted on the x and y axis, respectively.
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colored contour maps of the density of users in the (x,
hxiNN) plane, for both empirical data and the model. The
interaction network in Fig. 4(a) is obtained by aggregating
45 snapshots of the temporal network, where the system is
in a polarized state. Both our model [Fig. 4(a)] and
empirical data [Figs. 4(b)–4(d)] clearly show two bright
areas characterized by a high density of users with like-
minded neighbors, identifying two echo chambers corre-
sponding to opposite opinion groups.
In conclusion, we proposed a simple model that com-

bines network and opinion dynamics, and reproduced
crucial features of empirical social networks characterized
by polarization and echo chambers. The model is based on
three main assumptions inspired by empirical evidence:
(i) aggregated social influence, (ii) heterogeneous activity,
and (iii) homophily in the interactions. While the role of
social influence in opinion polarization has been exten-
sively studied, the effect of opinion reinforcement and
controversialness remains poorly understood, and has only
recently started to be addressed [39]. Within our model it is
identified as one of the main features driving the transition
between global consensus and radicalization. In the case of
controversial issues, a reinforcement mechanism leads to
radicalization dynamics and may drive groups of agents
away from the global consensus. For weak homophily, the
transition from consensus to radicalization dynamics can be
predicted analytically. It is important to remark that our
model is based on a minimal number of assumptions. Thus
it does not take into account some features of empirical
social networks which might additionally drive polarization
phenomena, such as targeted advertising or different
credibility of users. We hope that our work stimulates
empirical research on the dynamics of polarization in
online social networks to support our claims about the
interplay of homophily, controversialness, and the
reinforcement of opinions.

This work was developed within the scope of the IRTG
1740/TRP 2015/50122-0 and funded by the DFG and
FAPESP. The authors are indebted to K. Garimella, G.
De Francisci Morales, A. Gionis, and M. Mathioudakis for
sharing Twitter data, and to Philipp Hövel, G. De Francisci
Morales, L. Cerekwicki, and F. Sagues for helpful com-
ments and discussions.

*Corresponding author.
fabian.olit@gmail.com

†Corresponding author.
michele.starnini@gmail.com

[1] H. Gil de Zúñiga and S. Valenzuela, Commun. Res. 38, 397
(2011).

[2] M. Moussaïd, J. E. Kämmer, P. P. Analytis, and H. Neth,
PLoS One 8, e78433 (2013).

[3] P. Lorenz-Spreen, B. M. Mønsted, P. Hövel, and S.
Lehmann, Nat. Commun. 10, 1759 (2019).

[4] Internet penetration statistics, https://www.internetworldstats
.com/stats.htm.

[5] M. H. DeGroot, J. Am. Stat. Assoc. 69, 118 (1974).
[6] E. L. Glaeser and B. A. Ward, J. Econ. Perspect. 20, 119

(2006).
[7] D. Baldassarri and A. Gelman, Am. J. Sociology 114, 408

(2008).
[8] P. DiMaggio, J. Evans, and B. Bryson, Am. J. Sociology

102, 690 (1996).
[9] A. M. McCright and R. E. Dunlap, Sociological Quarterly

52, 155 (2011).
[10] L. A. Adamic and N. Glance, in Proceedings of the 3rd

International Workshop on Link Discovery (Association for
Computing Machinery, New York, 2005), pp. 36–43.

[11] M. D.Conover, J.Ratkiewicz,M. R.Francisco,B.Gonçalves,
F. Menczer, and A. Flammini, in International AAAI Con-
ference on Web and Social Media, North America (2011),
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/
paper/view/2847.

[12] A. Hanna, C. Wells, P. Maurer, L. Friedland, D. Shah, and J.
Matthes, in Proceedings of the 2nd Workshop on Politics,
Elections and Data, PLEAD ’13 (Association for Comput-
ing Machinery, New York, 2013), pp. 15–22.

[13] J. Borge-Holthoefer, W. Magdy, K. Darwish, and I. Weber,
in Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing, CSCW
2015, Vancouver, Canada, 2015 (Association for Comput-
ing Machinery, New York, 2015), pp. 700–711.

[14] R. K. Garrett, J. Comput. Mediat. Commun. 14, 265 (2009).
[15] K. Garimella, G. De Francisci Morales, A. Gionis, and M.

Mathioudakis, in Proceedings of the 2018 World Wide Web
Conference, WWW ’18 (International World Wide Web
Conferences Steering Committee, Geneva, Switzerland,
2018), pp. 913–922.

[16] M. D. Vicario, G. Vivaldo, A. Bessi, F. Zollo, A. Scala, G.
Caldarelli, and W. Quattrociocchi, Sci. Rep. 6, 37825
(2016).

[17] W. Cota, S. C. Ferreira, R. Pastor-Satorras, and M. Starnini,
EPJ Data Science 8, 35 (2019).

[18] M. Del Vicario, A. Bessi, F. Zollo, F. Petroni, A. Scala, G.
Caldarelli, H. E. Stanley, and W. Quattrociocchi, Proc. Natl.
Acad. Sci. U.S.A. 113, 554 (2016).

[19] R. Hegselmann and U. Krause, J. Artif. Soc. Simul. 5
(2002).

[20] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, Adv.
Complex Syst. 03, 87 (2000).

[21] R. Axelrod, J. Conflict Resolut. 41, 203 (1997).
[22] M. McPherson, L. Smith-Lovin, and J. M. Cook, Annu.

Rev. Sociol. 27, 415 (2001).
[23] A. Bessi, F. Petroni, M. Del Vicario, F. Zollo, A.

Anagnostopoulos, A. Scala, G. Caldarelli, and W.
Quattrociocchi, Eur. Phys. J. Spec. Top. 225, 2047 (2016).

[24] M.W. Macy, J. A. Kitts, A. Flache, and S. Benard, Dynamic
Social Network Modeling and Analysis (The National
Academies, Washington, DC, 2003), Vol. 162.

[25] T. V. Martins, M. Pineda, and R. Toral, Europhys. Lett. 91,
48003 (2010).

[26] A. Flache and M.W. Macy, J. Math. Sociol. 35, 146 (2011).
[27] M. Maes and L. Bischofberger, available at SSRN 2553436,

2015.

PHYSICAL REVIEW LETTERS 124, 048301 (2020)

048301-5

https://doi.org/10.1177/0093650210384984
https://doi.org/10.1177/0093650210384984
https://doi.org/10.1371/journal.pone.0078433
https://doi.org/10.1038/s41467-019-09311-w
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm
https://doi.org/10.1080/01621459.1974.10480137
https://doi.org/10.3386/w11857
https://doi.org/10.3386/w11857
https://doi.org/10.1086/590649
https://doi.org/10.1086/590649
https://doi.org/10.1086/230995
https://doi.org/10.1086/230995
https://doi.org/10.1111/j.1533-8525.2011.01198.x
https://doi.org/10.1111/j.1533-8525.2011.01198.x
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2847
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2847
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2847
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2847
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2847
https://doi.org/10.1111/j.1083-6101.2009.01440.x
https://doi.org/10.1038/srep37825
https://doi.org/10.1038/srep37825
https://doi.org/10.1140/epjds/s13688-019-0213-9
https://doi.org/10.1073/pnas.1517441113
https://doi.org/10.1073/pnas.1517441113
https://doi.org/10.1142/S0219525900000078
https://doi.org/10.1142/S0219525900000078
https://doi.org/10.1177/0022002797041002001
https://doi.org/10.1146/annurev.soc.27.1.415
https://doi.org/10.1146/annurev.soc.27.1.415
https://doi.org/10.1140/epjst/e2015-50319-0
https://doi.org/10.1209/0295-5075/91/48003
https://doi.org/10.1209/0295-5075/91/48003
https://doi.org/10.1080/0022250X.2010.532261


[28] A. Flache, M. Mäs, T. Feliciani, E. Chattoe-Brown, G.
Deffuant, S. Huet, and J. Lorenz, J. Artif. Soc. Soc. Simul.
20 (2017).

[29] M. Starnini, M. Frasca, and A. Baronchelli, Sci. Rep. 6,
31834 (2016).

[30] K. Sasahara, W. Chen, H. Peng, G. L. Ciampaglia, A.
Flammini, and F. Menczer, arXiv:1905.03919.

[31] D. J. Isenberg, J. Pers. Soc. Psychol. 50, 1141 (1986).
[32] D. G. Myers and H. Lamm, Psychol. Bull. 83, 602

(1976).
[33] P. Holme and M. E. J. Newman, Phys. Rev. E 74, 056108

(2006).
[34] D. Kimura and Y. Hayakawa, Phys. Rev. E 78, 016103

(2008).
[35] B. Jayles, H.-r. Kim, R. Escobedo, S. Cezera, A. Blanchet,

T. Kameda, C. Sire, and G. Theraulaz, Proc. Natl. Acad. Sci.
U.S.A. 114, 12620 (2017).

[36] H. Sompolinsky, A. Crisanti, and H.-J. Sommers, Phys. Rev.
Lett. 61, 259 (1988).

[37] E. Eldar, J. D. Cohen, and Y. Niv, Nat. Neurosci. 16, 1146
(2013).

[38] M. Mäs and A. Flache, PLoS One 8, e74516 (2013).
[39] K. Garimella, G. D. F. Morales, A. Gionis, and M.

Mathioudakis, T. Soc. Comput. Simul. 1, 3 (2018).
[40] A.-L. Barabasi, Nature (London) 435, 207 (2005).
[41] N.Perra,B.Gonçalves,R. Pastor-Satorras, andA.Vespignani,

Sci. Rep. 2, 469 (2012).
[42] M. Starnini and R. Pastor-Satorras, Phys. Rev. E 87, 062807

(2013).

[43] A. Moinet, M. Starnini, and R. Pastor-Satorras, Phys. Rev.
Lett. 114, 108701 (2015).

[44] S. Liu, N. Perra, M. Karsai, and A. Vespignani, Phys. Rev.
Lett. 112, 118702 (2014).

[45] J. K. Shin and J. Lorenz, J. Stat. Mech. (2010) P06005.
[46] J. A. Krosnick, J. Exp. Soc. Psychol. 24, 240 (1988).
[47] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.124.048301, which
contains an algorithmic description of the numerical sim-
ulations, the derivation of the critical controversialness,
information about the Twitter datasets, and additional
simulation results.

[48] W. J. Brady, J. A. Wills, J. T. Jost, J. A. Tucker, and J. J. Van
Bavel, Proc. Natl. Acad. Sci. U.S.A. 114, 7313 (2017).

[49] M. D. Conover, B. Gonçalves, A. Flammini, and F.
Menczer, Eur. Phys. J. Data Sci. 1, 6 (2012).

[50] I. Weber, V. R. K. Garimella, and A. Batayneh, in Proceed-
ings of the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis andMining–ASONAM
’13 (Association for ComputingMachinery Press, NewYork,
2013), pp. 290–297.

[51] T. Kurahashi-Nakamura, M. Mäs, and J. Lorenz, J. Artif.
Soc. Soc. Simul. 19, 7 (2016).

[52] S. Banisch and E. Olbrich, J. Math. Soc. 43, 76 (2019).
[53] E. Bakshy, S. Messing, and L. A. Adamic, Science 348,

1130 (2015).
[54] A. Bessi, F. Zollo, M. Del Vicario, M. Puliga, A. Scala, G.

Caldarelli, B. Uzzi, and W. Quattrociocchi, PLoS One 11,
e0159641 (2016).

PHYSICAL REVIEW LETTERS 124, 048301 (2020)

048301-6

https://doi.org/10.18564/jasss.3521
https://doi.org/10.18564/jasss.3521
https://doi.org/10.1038/srep31834
https://doi.org/10.1038/srep31834
https://arXiv.org/abs/1905.03919
https://doi.org/10.1037/0022-3514.50.6.1141
https://doi.org/10.1037/0033-2909.83.4.602
https://doi.org/10.1037/0033-2909.83.4.602
https://doi.org/10.1103/PhysRevE.74.056108
https://doi.org/10.1103/PhysRevE.74.056108
https://doi.org/10.1103/PhysRevE.78.016103
https://doi.org/10.1103/PhysRevE.78.016103
https://doi.org/10.1073/pnas.1703695114
https://doi.org/10.1073/pnas.1703695114
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1038/nn.3428
https://doi.org/10.1038/nn.3428
https://doi.org/10.1371/journal.pone.0074516
https://doi.org/10.1038/nature03459
https://doi.org/10.1038/srep00469
https://doi.org/10.1103/PhysRevE.87.062807
https://doi.org/10.1103/PhysRevE.87.062807
https://doi.org/10.1103/PhysRevLett.114.108701
https://doi.org/10.1103/PhysRevLett.114.108701
https://doi.org/10.1103/PhysRevLett.112.118702
https://doi.org/10.1103/PhysRevLett.112.118702
https://doi.org/10.1088/1742-5468/2010/06/P06005
https://doi.org/10.1016/0022-1031(88)90038-8
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.048301
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.048301
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.048301
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.048301
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.048301
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.048301
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.048301
https://doi.org/10.1073/pnas.1618923114
https://doi.org/10.18564/jasss.3220
https://doi.org/10.18564/jasss.3220
https://doi.org/10.1080/0022250X.2018.1517761
https://doi.org/10.1126/science.aaa1160
https://doi.org/10.1126/science.aaa1160
https://doi.org/10.1371/journal.pone.0159641
https://doi.org/10.1371/journal.pone.0159641

