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The interaction of light with solids gives rise to new bosonic quasiparticles, with the exciton being—
undoubtedly—the most famous of these polaritons. While excitons are the generic polaritons of
semiconductors, we show that for strongly correlated systems another polariton is prevalent—originating
from the dominant antiferromagnetic or charge density wave fluctuations in these systems. As these are
usually associated with a wave vector ðπ; π;…Þ or close to it, we propose to call the derived polaritons
π-tons. These π-tons yield the leading vertex correction to the optical conductivity in all correlated models
studied: the Hubbard, the extended Hubbard model, the Falicov-Kimball, and the Pariser-Parr-Pople model,
both in the insulating and in the metallic phase.
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Since the springtime of modern physics, the interaction
of solids with light has been of prime interest. The arguably
simplest kind of interaction is Einstein’s Nobel Prize–
winning photoelectric effect [1], where the photon excites
an electron across the band gap. More involved processes
beyond a mere electron-hole excitation can be described in
general by effective bosonic quasiparticles, coined polar-
itons since a polar excitation is needed to couple the solid
to light.
The prime example of a polariton is the exciton [2,3],

where the excited electron-hole pair is bound due to the
Coulomb attraction between electron and hole. This inter-
action is visualized in Fig. 1(a). Since it is an attractive
interaction, an exciton requires the exciton binding energy
less than an unbound electron-hole pair. Other polaritons
describe the coupling of the photon to surface plasmons,
magnons, or phonons.
Figure 1(b) describes the exciton in terms of Feynman

diagrams: the incoming photon creates the electron-hole
pair (distinguishable by the different [time] direction of
the arrows) which interact with each other repeatedly and
finally recombine emitting a photon. Since the energy-
momentum relation of light is very steep compared to the
electronic band structure of a solid, the transferred momen-
tum from the photon is negligibly small q ¼ 0. Thus, the
electron and hole have the same momentum. For semi-
conductors this is often the preferable momentum transfer
as well, connecting the bottom of the conductance with the
top of the valence band as in Fig. 1(a).
In this Letter, we show that the generic polaritons for

strongly correlated systems are strikingly different. While
semiconductors are band insulators with a filled valence
and empty conduction band, strongly correlated systems
are typically closer to a half-filled (or in general integer

filled) band that is split into two Hubbard bands by
strong electronic correlations as visualized in Fig. 1(c)
for a Mott insulator. (In case of a metallic system there is an
additional quasiparticle band). Both metal and insulator are
prone to strong antiferromagnetic (AFM) or charge density
wave (CDW) fluctuations with a wave vector close to
q ¼ ðπ; π;…Þ [4,5]. Indeed these fluctuations can be
described by the central part of the Feynman diagram
Fig. 1(b), where the bare ladder diagrams correspond to the
random phase approximation (RPA). However the wave
vector q ¼ ðπ; π;…Þ cannot directly couple to light, which

(a) (c)

(b) (d)

FIG. 1. Sketch of the physical processes (top) and Feynman
diagrams (bottom) behind an exciton (left) and a π-ton (right).
The yellow wiggled line symbolizes the incoming (and outgoing)
photon, which creates an electron-hole pair denoted by open and
filled circles, respectively. The Coulomb interaction between
the particles is symbolized by a red wiggled line; dashed line
indicates the recombination of the particle and hole; dotted line
denotes the creation of a second particle-hole pair (right); black
lines the underlying band structure (top panels).
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only transfers q ¼ 0. Hence an exciton-like polariton as
displayed in Fig. 1(b) is not possible for AFM or CDW
fluctuations.
As we will show in this Letter, the ðπ; π;…Þ fluctuations

nonetheless constitute the dominant vertex corrections
beyond a bare (bubble) particle-hole excitation. This is
possible through a process where the central part of the
Feynman diagram Fig. 1(b), i.e., the ðπ; π;…Þ fluctuations,
are rotated (and flipped) as sketched in Fig. 1(d). Now it is
possible to transfer q ¼ 0 from the photon and to pick up
nonetheless the strong AFM or CDW fluctuations at
k − k0 ≈ ðπ; π;…Þ. The physics of the associated process
is visualized in Fig. 1(c). First, the light creates an electron-
hole pair. Through the Coulomb interaction this electron
hole-pair creates by impact ionization a second electron-
hole pair at a wave vector displaced by ðπ; π;…Þ, and the
two interact repeatedly with each other, before emitting a
photon again. Note that if one assigns times to the electron-
photon and Coulomb interactions in Fig. 1(d) there are,
after the first and till the last Coulomb interaction, always
two particle and two hole Green’s functions (cf. the
Supplemental Material, Fig. S8 SM). This makes the
π-ton distinctively different from Mott excitons [6–9] or
quasiparticle-quasihole excitations, including those envis-
aged in [10] where the importance of AFM fluctuations
was realized.
This excitation resembles to some extent [11] the pairing

of electrons in superconductors through magnetic fluctua-
tions. Since AFM or CDW fluctuations are typically at or
close to a wave vector ðπ; π;…Þ, we suggest to call this
polariton a π-ton. But of course if a strongly correlated
system happens to have its dominant fluctuations at another
wave vector k − k0 ≠ 0, the same processes described in this
Letter allow for the coupling to light, creating polaritons.
In hindsight it appears rather obvious that AFM or CDW

fluctuations couple this way to light. Why has this not been
realized before? This is because numerical methods such as
quantum Monte Carlo calculations [10] or exact diagonal-
ization [12] suffer from the difficulty to analyze the
underlying physical processes highlighted by the parquet
decomposition, and analytical methods such as, e.g., RPA
or FLEX [13] have been mostly biased with respect to
certain channels such as the particle-hole (ph) channel in
Fig. 1(b) for excitons. Similar Feynman diagrams but with
maximally crossed interaction lines, i.e., the particle-
particle (pp) channel, have been made responsible for
weak localization [14] and strong localization [15] in
disordered systems. But the third (rotated) transversal
particle-hole (ph) channel of Fig. 1(d) has, to the best
of our knowledge, not been considered hitherto, except for
the second-order diagram, the Aslamazov-Larkin correc-
tion [16–18], which for half-filling compensates the sec-
ond-order diagram of the pp channel. Let us emphasize
that it is however the whole ladder that is responsible for
strong AFM or CDW fluctuations.

Our insight has only been possible because of recent
methodological advances that allow us to study all three
aforementioned channels unbiasedly, using the parquet
equations [19–21] within the dynamical vertex approxi-
mation (DΓA) [22–24], the dual fermion approach (DF)
[25] and the parquet approximation (PA) [19]. For a review
of these and related methods [26–29], see [30].
Models and methods.—Let us now turn to the actual

calculations, starting with introducing the models, which
all can be summarized in the Hamiltonian

H ¼ −t
X

hijiσ
c†iσcjσ þ U

X

i

ni↑ni↓ þ
1

2

X

i≠j;σσ0
Vijniσnjσ0 ; ð1Þ

where cð†Þiσ represents an annihilation (creation) operator for
an electron with spin σ at site i; niσ ¼ c†iσciσ; hiji sums over
each nearest neighbor pair i, j once. For the Hubbard model
(HM) we have a local interactionU only, i.e., Vij ¼ 0, and t
denotes the hopping. We also study the extended Hubbard
model (EHM), with nearest-neighbor interaction Vij ¼ V.
The Pariser-Parr-Pople model (PPP) [31,32] describes
conjugated π bonds in carbon-based organic molecules
and is here employed for a benzene ring, i.e., a one-
dimensional chain with six sites, periodic boundary con-
ditions and interactions between all sites. Finally, the
Falicov-Kimball model (FKM) [33,34] has the same form
as the HM but the hopping is only for one spin species. All
models are solved for the square lattice (except PPP) at
half-filling in the paramagnetic phase; t≡ 1 and Planck
constant ℏ≡ 1 set our unit of energies and frequencies; for
the optical conductivity lattice constant a≡ 1, elementary
charge e≡ 1.
We employ the method which we consider most

appropriate for the four models, i.e., the parquet DΓA
for the HM [35], the PA for the EHM and PPP (which
is here more precise than a non-self-consistent DΓA
[36,37]), and a parquet variant of the DF, extending
earlier DF approaches [38–40]. We solve the parquet
equations on a 6 × 6 momentum grid, except for the
PPP for benzene which has six sites or momenta. For the
HM, EHM, and PPP we use the VICTORY code [21]
to solve the parquet equations, and W2DYNAMICS [41]
to calculate the fully irreducible vertex in case of the
HM; for the FKM we employ a reduced frequency
structure of the vertex [40,42] implemented in a special-
purpose parquet code [43].
The optical conductivity σðωÞ ¼ ℜf½χq¼0

jj ðωþ iδÞ−
χq¼0
jj ðiδÞ�=½iðωþ iδÞ�g, for δ → 0, is calculated from the

current-current correlation function χq¼0
jj at Matsubara

frequency ωn and momentum q ¼ 0, which can be sepa-
rated into a bubble term consisting of two Green’s functions

Gk only and vertex corrections Fkk0q
d in the following way:
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χjj;q ¼
2

βN

X

k

½γqk�2GqþkGk

þ 2

ðβNÞ2
X

k;k0
γqkγ

q
k0Gk0GqþkF

kk0q
d Gqþk0Gk: ð2Þ

Here, we use a four-vector notation k ¼ ðk; νnÞ with
q ¼ ðq ¼ 0;ωnÞ; γq¼0

k ¼ ∂ϵk=∂k denotes the dipole
matrix elements given by the derivative of the energy-
momentum relation in the Peierls approximation [44];
β ¼ 1=T is the inverse temperature and N the number of
k points.
In the parquet-based approaches employed, the vertex F

contains contributions from the fully irreducible vertexΛ as
well as contributions that are reducible in the three channels
(ph, ph, pp): F ¼ ΛþΦph þΦph þΦpp [51]. The den-
sity component Fd that enters the optical conductivity
denotes the even spin combination [20,30].
Inserting in Eq. (2) instead of F one of the summands Λ,

Φph=ph=pp we obtain the contributions from the respective

channels: χΛ, χph, χph, and χpp. The most simple con-

tributions to χph and χph are just the ladder diagrams of
Figs. 1(b) and 1(d), respectively. For the analytic continu-
ation of the optical conductivity to real frequencies we
employ the maximum entropy method [53]; for the PPP
we use Padé interpolation.
Results: optical conductivity.—Let us now turn to the

results, starting with the optical conductivity in Fig. 2 (top).
Within the four models, we studied five physically different
examples: HM (metal), EHM (metal), PPP (insulator),
FKM (insulator), and FKM (metal) [see the Supplemental

Material [45] for results at different parameters]. In all five
cases we see noticeable vertex corrections. For the two
insulators, especially for the PPP, there is a strong reduction
of the optical gap compared to the one-particle gap (bare
bubble contribution σ0). Usually onewould associate such a
reduction to the exciton binding energy. However, when
inspecting the contribution of the individual channels in
Fig. 2 (bottom), we see that it is not the ph channel of the
exciton but the ph channel that is dominating and respon-
sible for the reduction of the optical gap. Note that a ph
ladder built from a local interaction (RPA) or a local vertex
(as, e.g., in dynamical mean field theory [54]) has zero
contribution to the optical conductivity [55]. This is why we
included in our study also the PPP and EHMwhere through
nonlocal interaction one obtains simple ladder contributions
in the ph channel [56].
For two of the metallic cases (HM and FKM) the vertex

corrections reduce the conductivity at small frequencies.
One might be tempted to associate this with weak locali-
zation corrections, i.e., the pp channel. But again by
inspecting the vertex contributions in Fig. 2 (bottom) we
see that it is the ph channel that is dominating; the pp
contribution is small. The third metallic case (EHM) is
different in the sense that, besides the ph channel, the bare
vertex Λ contributes to a similar amount. This is because
the nonlocal interaction provides an additional way to
polarize the system and hence to couple to light.
In all cases except for the EHM, the pp channel provides

the second largest contribution. One might suspect that this
stems from simple RPA-like ladder diagrams as envisaged
in the theory of weak localization. But this is not the case.
In the case where this pp channel is largest, i.e., for the

FIG. 2. Top: optical conductivity for real frequency (main panel) and the corresponding current-current correlation function in
Matsubara frequencies (insets) of the five cases studied, showing the bare bubble (σ0) and the full conductivity (σ) including vertex
corrections (in the insets χ0jj and χjj, respectively). Bottom: corresponding vertex correction to the current-current correlation function

χjj separated into ph, ph, pp, and Λ contributions. For the PPP model also the contribution of a RPA-like pp ladder is shown.
Parameters from left to right: U ¼ 4t, T ¼ 0.1t (HM); U ¼ 4t, T ¼ 0.17t, V ¼ t (EHM); T ¼ 0.1t, U ¼ 3.962t, V01 ¼ 2.832t,
V02 ¼ 2.014t, V03 ¼ 1.803t (PPP; interactions translated into units of t are fitted to experiment [57]); U ¼ 6t, T ¼ 0.28t (FKM
insulator); U ¼ 2t, T ¼ 0.28t (FKM metal).
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PPP, we additionally plot the contribution from a bare RPA-
like pp ladder. It is negligibly small.
Physical origin of vertex corrections.—Why does the ph

channel give such a big contribution? It is because of the
dominant fluctuations in the system. These are AFM or
CDW fluctuations at a wave vector ðπ; π;…Þ (see below).
These fluctuations are already generated by RPA-ladder
diagrams in the ph channel and in the ph channel as
visualized in Fig. 1. Let us emphasize however, that the
employed parquet methods take many more Feynman
diagrams and the mutual coupling of these channels into
account. This coupling, in particular the pp inclusions,
leads to a damping of the contribution of the ph and ph
channels. One can still envisage the physics as in Fig. 1(d)
but with a renormalized (screened) interaction and a
renormalized propagator.
The fact that, on the other hand, the bare pp ladder in

Fig. 2 (bottom middle) is small shows us that there is a
strong feedback of the AFM or CDW fluctuations into the
pp channel through the parquet equations, which leads to
the considerable contributions of the pp channel. In other
words, these pp contributions arise (only) as a conse-
quence of the enhanced AFM and CDW fluctuations [58].
To demonstrate the importance of the ðπ; πÞ contribution,

we plot in Fig. 3 the reducible contributions Φ to the full
vertex F as a function of k0 − k for the ph and ph
channels, setting q ¼ 0 for the optical conductivity.
Note that, although the reducible ph and ph vertices are
interrelated, it is a different momentum and frequency
combination that enters the optical conductivity (see the
Supplemental Material [45]). As we see in Fig. 3 this ph
contribution is small and the ph contribution is strongly

peaked at the wave vector k0 − k ¼ ðπ; πÞ because of the
strong AFM and CDW fluctuations for the HM and EHM,
respectively. A similar finding holds for the FKM and PPP
model (see the Supplemental Material [45]). Hence we can
conclude that it is indeed predominately the k0 − k ¼
ðπ; πÞ contribution that is responsible for the vertex
corrections in the optical conductivity, and therefore we
call these polaritons π-tons.
Characteristics of the π-ton.—While AFM and CDW

fluctuations are dominant at all parameters and temperatures
analyzed, they become—as a matter of course—stronger
when we approach a corresponding phase transition. This
effect can be seen in Fig. 3. For the HM (top panel of Fig. 3),
reducing the temperature means that AFM fluctuations
become strongly enhanced, cf. [24,38,59–61]. While there
is no finite-temperature phase transition in two dimensions,
the correlation length becomes exponentially large [62]. For
the EHM, Fig. 3 (bottom), we instead enhance the nonlocal
interaction V. This way we approach a phase transition
towards CDWordering (at 4V ¼ U in the atomic limit and
at a slightly larger Vs here [37]).
Conclusion and outlook.—We have provided compelling

evidence for what appears to be the generic polaritons in
strongly correlated electron systems—at least in one and
two dimensions. These polaritons, coined π-tons, consist of
two particle-hole pairs coupled to the incoming and out-
going light, respectively, and glued together by AFM and
CDW fluctuations. Let us emphasize that having two
particle-hole pairs (or two holons and two doublons) is a
distinct difference to (Mott) excitons [6–9].
In other numerical calculations, π-tons can be identified

by doing a channel diagnostics (see the Supplemental
Material [45]). In case of π-tons it will show the predomi-
nance of the particle-hole transversal channel and in case
of (Mott) excitons of the particle-hole channel instead.
This diagnostics requires only full knowledge of the one-
and two-particle Green’s functions.
The experimental validation of π-tons is more challeng-

ing. Indeed, the optical conductivity has been studied for a
wide range of materials [63–70]. But now that we know
that there are π-tons, too, we need to distinguish these
π-tons from excitons or in metals from weak localization
corrections. We see three routes to do so (see the
Supplemental Material [45] for an extended discussion).
(1) Employing the characteristics of π-tons to rely on AFM
or CDW fluctuations [71], we can employ a control
parameter such as temperature, uniaxial pressure or a
magnetic field to change these fluctuations. If there are
π-tons there will be corresponding changes in the optical
spectrum. Indeed such a characteristic change, specifically
an unusual reduction of the optical gap around the Néel
temperature, has been already observed in SmTiO3 [67].
To ensure that this effect actually originates from π-tons
excluding a simple reduction of the one-particle gap or
spin-polaron formations [6,7,72–74], additional angular

FIG. 3. Reducible contributions Φ in the ph and ph channel to
the full vertex Fνnν

0
nωn

d;kk0q¼0
correcting the optical conductivity. Top:

HM at various temperatures and U ¼ 4t. Bottom: EHM at
U ¼ 4t, T ¼ 0.17t, and various V. Shown is the contribution
νn ¼ ν0n ¼ πT; ωn ¼ 0 at fixed k ¼ 0 as a function of k0 − k.
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resolved photoemission spectroscopy (ARPES) and inverse
ARPES are necessary as a function of the control param-
eter. (2) In a joint experimental and theoretical effort we can
take the experimental one-particle spectrum Akν (as, e.g.,
measured in ARPES and inverse ARPES) and the exper-
imental dynamic spin susceptibility χmðq;ωÞ (as, e.g.,
measured by neutron spectroscopy) and calculate from
this the optical conductivity σðωÞ including π-tons and
compare it with the measured one. (3) Last but not least we
can do ab initio calculations of strongly correlated materi-
als for which π-tons may be expected, e.g., along the line
of [75], and calculate the optical spectrum including π-tons
and exciton contributions. Given good agreement with
experiment and sizable π-ton effects, this would provide
excellent evidence for π-tons.
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