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We have theoretically investigated transport properties of the classical Heisenberg antiferromagnet on
the triangular lattice, in which a binding-unbinding topological transition of Z2 vortices is predicted to
occur at a finite temperature Tv. It is shown by means of the hybrid Monte Carlo and spin-dynamics
simulations that the longitudinal spin-current conductivity exhibits a divergence at Tv, while the thermal
conductivity only shows a monotonic temperature dependence with no clear anomaly at Tv. The significant
enhancement of the spin-current conductivity is found to be due to the rapid growth of the spin-current-
relaxation time toward Tv, which can be understood as a manifestation of the topological nature of the free
Z2 vortex whose lifetime gets longer toward Tv. The result suggests that the spin-current measurement is a
promising probe to detect the Z2-vortex topological transition, which has remained elusive in experiments.
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In frustrated magnets, competitions between exchange
interactions often result in a noncollinear magnetic state
whose ordering wave vector may be commensurate or
incommensurate with the underlying lattice structure. In the
case of isotropic Heisenberg spins, such a noncollinear spin
structure is invariant under any rotation in the three-
dimensional spin space, so that the order parameter space
has the topology of SO(3). On the two-dimensional lattice,
a point defect, namely, a vortex excitation, in the SO(3)
manifold is characterized by the topological number of Z2,
and thus it is called a “Z2 vortex” [1]. In contrast to an
ordinary vortex having an integer topological number Z,
less is known about how the Z2 vortices affect magnetic
properties of the system. In this Letter, as a typical platform
for the Z2 vortex, we consider the classical Heisenberg
antiferromagnet on the triangular lattice and investigate its
transport properties, focusing on the role of the Z2-vortex
excitations.
The ground state of the triangular-lattice Heisenberg

antiferromagnet with the nearest-neighbor (NN) exchange
interaction J [1–5] is the noncollinear 120° Néel state,
in which three spins on each triangle, S1, S2, and S3,
constitute additional degrees of freedom, a chirality vector
κ ¼ ½2=ð3 ffiffiffi

3
p Þ�ðS1 × S2 þ S2 × S3 þ S3 × S1Þ. When the

spin correlation develops over a lattice spacing at moder-
ately high temperatures, the 120° spin structure is held in
spatially local regions, e.g., elementary triangles. Such
triangles having the local 120° structure and the associated
chirality vector κ are building blocks of the Z2 vortex [1].
A typical Z2 vortex is shown in Fig. 1(a). In the three-
component spin space, it forms a three-dimensionally
oriented spin texture and can be viewed as a vortex formed
by κ. The topological object of the Z2 vortex is relevant to
the phase transition in this system [1–5].

As is well established, spins in the present system do not
order except at T ¼ 0. In other words, the spin correlation
length ξs is finite at any finite temperature. In the middle
1980s, Kawamura and Miyashita theoretically predicted
that, although spins are disordered with ξs being finite,
there exists a Kosterlitz-Thouless (KT)-type topological
phase transition associated with binding-unbinding of the
Z2 vortices [1]. The Z2-vortex transition temperature Tv is
estimated to be Tv=jJj ≃ 0.285 via extensive Monte Carlo
(MC) simulations [4]. At lower temperatures T < Tv, all
the Z2 vortices are paired up [see Fig. 1(b)], while at higher
temperatures T > Tv, dissociated free Z2 vortices can be
found [see Fig. 1(c)]. On approaching Tv from above, the
vortex density is reduced due to the vortex-pair annihilation
and, correspondingly, the vortex correlation length ξv,
which corresponds to the distance between free vortices,
diverges toward Tv, whereas the spin correlation length ξs
remains finite [4,5]. Once across Tv, the ergodicity is
broken, since the phase space is restricted only in the sector
without free vortices. The low-temperature phase separated
topologically from the ergodic disordered phase is some-
times called a “spin-gel” state [4–6].
In the triangular-lattice antiferromagnets NiGa2S4 [7–18],

FeGa2S4 [19,20], NaCrO2 [21–24], KCrO2 [25,26], and
AAg2Cr½VO4�2 (A ¼ K, Rb) [27], a long-range magnetic
order has not been observed down to the lowest temperature
reachable in experiments, indicating the realization of the
spin-gel state, and the possible existence of the Z2-vortex
transition has extensively been discussed. Nevertheless, the
Z2-vortex transition has remained elusive because static
physical quantities such as the specific heat C and the
magnetic susceptibility χm exhibit only a weak essential
singularity at Tv [4,5]. In this Letter, to propose a smoking-
gun experiment to detect the transition, we examine
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dynamical physical quantities that may sensitively capture
the dynamics characteristic of bound and unbound vortices.
In this context, it was theoretically pointed out that the paired
and free vortices show different characteristic features in the
dynamical spin structure factor near M and K points of the
Brillouin zone, respectively [6]. Since, in general, dynamical
properties should also be reflected in transport phenomena,
here,we theoretically investigate the conductivity of spin and
thermal currents, putting particular emphasis on the spin
transport, which is nowadays becoming available as a probe
to study magnetic fluctuations and excitations [28–34].
In the low-temperature phase (spin-gel state) below Tv,

spin and thermal currents should be carried by spin waves
or magnons. At higher temperatures above Tv, thermally
activated free Z2 vortices may strongly affect the current
relaxation, because the vortex as a topological object is
generally robust against perturbations, resulting in a rela-
tively long lifetime compared with the damping of the spin-
wave mode. As we will demonstrate in this Letter, this is
actually the case for the spin-current relaxation, which gets
slower on cooling toward Tv, and as a result, the longi-
tudinal spin-current conductivity grows up to diverge at Tv,
serving as a distinct probe of the Z2-vortex transition.
The model Hamiltonian we consider is given by

H ¼ −J
X
hi;ji

Si · Sj; ð1Þ

and its dynamical properties is determined by the semi-
classical equation of motion,

dSi

dt
¼ Si × J

X
j∈NðiÞ

Sj; ð2Þ

where Si is a classical Heisenberg spin, J < 0, hi; ji
denotes the summation over all the NN pairs, and NðiÞ
denotes all the NN sites of i. Since Eq. (2) is a classical
analog of the Heisenberg equation for the spin operator, all
the static and dynamical magnetic properties intrinsic to the
Hamiltonian (1) should be described by the combined use
of Eqs. (1) and (2). From the conservation of the mag-
netization and the energy, one can define the spin current Jαs
and the thermal current Jth as follows [35–45]:

Jαs ¼ J
X
hi;ji

ðri − rjÞðSi × SjÞα; ð3Þ

Jth ¼
J2

4

X
i

X
j;k∈NðiÞ

ðrj − rkÞðSj × SkÞ · Si; ð4Þ

where α in Jαs denotes the spin component. One can see
from Eqs. (3) and (4) that Jαs and Jth are associated with the
vector and scalar chiralities, respectively. Since the Z2

vortex is a texture formed by the vector chirality κ, the spin
transport is expected to be sensitive to the existence of the
Z2 vortex.
Within the linear response theory [46], one can define the

spin-current conductivity σsμν and the thermal conductivity
κμν for the classical spin systemsas follows [36–38,40,41,45]:

σsμν ¼
1

TL2

Z
∞

0

dthJs;νð0ÞJs;μðtÞi;

hJs;νð0ÞJs;μðtÞi ¼
1

3

X
α¼x;y;z

hJαs;νð0ÞJαs;μðtÞi; ð5Þ

κμν ¼
1

T2L2

Z
∞

0

dthJth;νð0ÞJth;μðtÞi; ð6Þ

where L is a linear system size, hOi denotes the thermal
average of a physical quantity O, and the spin-current
conductivity σsμν is averaged over the three spin compo-
nents because the spin space is isotropic in the present
Heisenberg model. Noting that, in Eq. (2), time t is
measured in units of jJj−1, it turns out that σsμν is a
dimensionless quantity and κμν has the dimension of jJj.
As we take the lattice constant a to be a ¼ 1, the total
number of spin Nspin and L is related by Nspin ¼ L2.
In Eqs. (3) and (4), the time evolutions of Jαs and Jth are

determined microscopically by the spin-dynamics equa-
tion (2). By using the second-order symplectic method
[6,47,48], we numerically integrate Eq. (2) typically up to

T/ |J |= 0.32

T/ |J |= 0.28

x

y

(a) (b)

(c)

x

y

S z

S x

S y

FIG. 1. (a) A schematically drawn Z2 vortex. Spin and chirality
vectors projected onto the two-dimensional lattice (xy) plane,
where the central black dot represents a vortex core. (Inset) An
enlarged three-dimensional view of each gray-colored triangle in
(a), where a red (blue) arrow represents a spin vector Si pointing
upward (downward) without (with) in-plane components, and a
green one represents a chirality vector κ. As the three spins at
each gray-colored triangle constitute the 120° structure, κ does
not have an out-of-plane component. Snapshots of the vortex-
core distribution taken in the MC simulation below and above the
Z2-vortex transition temperature Tv=jJj ¼ 0.285 are shown in (b)
and (c), respectively, where black dots represent vortex cores. The
definition of the Z2-vortex core is the same as that in Ref. [1].
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t ¼ 100jJj−1–800jJj−1 with the time step δt ¼ 0.01jJj−1
and initial spin configurations generated by MC simula-
tions. In this Letter, we performed 10–20 independent MC
runs starting from different initial configurations under the
periodic boundary conditions, and prepared 2000–4000
equilibrium spin configurations by picking up a spin
snapshot every 1000 MC sweeps after 105 MC sweeps
for thermalization, where one MC sweep consists of one
heat-bath sweep and successive 10–30 over-relaxation
sweeps. The thermal average is taken as the average over
initial equilibrium spin configurations. We have checked
that results are not altered if the fourth-order Runge-Kutta
method is used instead of the second-order symplectic
method. By analyzing the system-size dependence of σsμν
and κμν, we will discuss the temperature dependences of the
conductivities in the thermodynamic limit (L → ∞) of our
interest.
Figure 2 shows the longitudinal (xx) and transverse (yx)

components of the spin-current conductivity σsμν and the
thermal conductivity κμν as a function of the temperature T,
which are obtained for various system sizes ranging
from L ¼ 24 to L ¼ 768. Since the result on the yy (xy)
component is qualitatively the same as that on the xx (yx)
one, only the latter is shown in Fig. 2, where the x and y
directions are taken along the bond and off-bond directions
of the triangular lattice, respectively [see Fig. 1(a)]. As
readily seen from Fig. 2, the longitudinal spin-current
conductivity σsxx exhibits a divergent sharp peak near Tv,
while the longitudinal thermal conductivity κxx only shows a
monotonic temperature dependence, except for a possible
weak anomaly near Tv, which is, however, not evident at the
precision of our numerical calculation. In both the spin and
thermal transports, the transverse Hall response, σsyx and κyx,
is absent at 2σ precision [see Fig. 2(c)].
We first discuss the low-temperature transport caused by

magnons, which might be described by the linear-spin-
wave theory (LSWT). As shown in Fig. 2(b), κxx increases
monotonically toward T ¼ 0. As LSWT predicts κxx ∝
1=αd with the magnon damping αd (see Supplemental
Material [49]), the observed monotonic increase in κxx can
be understood as a result of the reduced scattering rate of
magnons toward T ¼ 0, i.e., αd → 0 [45]. Since the spin
current should be carried by magnons as well, one may
naively expect that σsxx increases toward T ¼ 0 similar
to κxx, but this does not seem to be the case for the
numerically obtained σsxx [see Fig. 2(a)]. Also, in LSWT,
the magnon-spin-current conductivity is calculated as σsxx ∼
constT=αd þ Tαdξs with ξs ∼ exp½bHjJj=T� [49], sug-
gesting that its temperature dependence is not so trivial
because of the competition between αd → 0 and ξs → ∞.
Such a situation is in sharp contrast to that of the
unfrustrated Heisenberg antiferromagnet on the square
lattice, in which σsxx ∼ constT=αd þ Tξs=αd is obtained,
i.e., σsxx unambiguously increases in a monotonic manner
toward T ¼ 0. This increasing behavior has been confirmed

by numerical simulations [45]. In the present system,
although the T → 0 limit of σsxx remains unclarified, at
least it is certain that the unusual low-temperature spin
transport has its origin in the magnetic frustration.
Next, we discuss the significant enhancement of σsxx near

Tv, which points to a strong association between the spin
transport and the Z2-vortex transition. As one can clearly
see from the lower panel of Fig. 2(a), with increasing the
system size L, the peak height in σsxx increases and the peak
temperature approaches Tv=jJj ≃ 0.285 from above, sug-
gesting that, in the L → ∞ limit, σsxx diverges at Tv. At
T ≳ 0.3jJj > Tv, σsxx saturates to a constant value as a
function of the system size L which corresponds to σsxx in
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FIG. 2. The temperature dependence of the spin-current con-
ductivity σsμν and the thermal conductivity κμν, where the longi-
tudinal (transverse) components of σsμν and κμν are shown in
(a) [(c), left] and (b) [(c), right], respectively. κμν is measured in
units of jJj, whereas σsμν is a dimensionless quantity. A black arrow
indicates the Z2-vortex transition temperature, Tv=jJj ≃ 0.285. In
(a), the lower panel shows a semilogarithmic plot of the upper
panel together with black-colored data representing σsxx values in
the thermodynamic limit ofL → ∞, and a dashed curve represents
the σsxxðTÞ curve obtained by fitting the L → ∞ data (see the main
text). In (b), the inset shows an enlarged view near Tv.
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the thermodynamic limit of L → ∞. The L → ∞ values of
σsxx are represented by black symbols in the lower panel of
Fig. 2(a).
Now, we discuss the functional form characterizing the

divergence of σsxx at Tv. Noting that the vortex correlation
length ξv grows up toward Tv in the exponential form ξv ∼
expfA½jJj=ðT − TvÞ�αg with the estimated values of α ¼
0.42 and A ¼ 0.84–0.97 [4], we fit the L → ∞ data of σsxx
with the functional form of b expfa½jJj=ðT − TvÞ�0.42g. The
resultant fitting function with the obtained values of a ¼
1.15� 0.06 and b ¼ 0.028� 0.007 is represented by a
dashed curve in Fig. 2(a). One can see that the obtained
exponential form well characterizes the divergent behavior
of σsxx.
To clarify the origin of the exponential divergence, we

examine the temperature dependence of the time correla-
tion function hJs;xð0ÞJs;xðtÞi, which involves the funda-
mental information about σsxx [see Eq. (5)]. The inset of
Fig. 3(a) shows a typical example of the time correlation
function normalized by the system size hjs;xð0Þjs;xðtÞi≡
hJs;xð0ÞJs;xðtÞi=L2. As the time correlation decays expo-
nentially in the form of exp½−t=τs�, one can define a
characteristic timescale, namely, a spin-current-relaxation
time τs. Then, the time correlation function can roughly be
written as hjs;xð0Þjs;xðtÞi ∼ hjjs;xð0Þj2i exp½−t=τs�. By
carrying out the integral over time in Eq. (5), one can
estimate the longitudinal spin-current conductivity as
σsxx ∼ T−1τshjjs;xð0Þj2i. Figure 3 shows the temperature
dependences of hjjs;xð0Þj2i and τs, where τs is extracted by

fitting the long-time tail of hjs;xð0Þjs;xðtÞi with exp½−t=τs�.
One can see that on approaching Tv from above, τs is
significantly enhanced, while hjjs;xð0Þj2i exhibits a weaker
anomaly. The functional type characterizing the steep
increase in τs is also an exponential one. By fitting the
data at T=jJj≳ 0.3 with b̃ expfã½jJj=ðT − TvÞ�0.42g, we
obtain ã ¼ 1.21� 0.05 and b̃ ¼ 0.10� 0.02. The extrapo-
lated τsðTÞ curve represented by a dashed curve in Fig. 3(b)
well characterizes the numerically obtained divergent
behavior of τs. As σsxx is related to τs and hjjs;xð0Þj2i via
σsxx ∼ T−1τshjjs;xð0Þj2i, it turns out that the divergent
behavior in σsxx originates from the exponential rapid
growth of τs toward Tv. Actually, the obtained values of
a and ã are close to each other.
Here, we provide the physical interpretation of the above

result. On cooling toward Tv, the inter-free-vortex distance
ξv increases, so that a free Z2 vortex wanders for a longer
time until it collides with an other free Z2 vortex to be pair
annihilated. Since the vortex motion is not ballistic but
rather diffusive [49], the vortex lifetime τv could be
estimated roughly as τv ∝ ξ2v ∼ expf2A½jJj=ðT − TvÞ�αg,
so that τv should get longer in the exponential form toward
Tv with 2A ≃ 1.68–1.94, which is comparable to a and ã.
Since the two timescales τs and τv develop toward Tv in
almost the same manner as a function of the temperature
and, furthermore, σsxx is proportional to τs, we could
conclude that the divergent peak at Tv in the σsxx curve
is attributed to the topological excitations of the long-
lifetime free Z2 vortices.
Finally, we address experimental aspects to detect the

divergent enhancement of σsμμ at Tv. Since a single crystal is
necessary for transport experiments, a good candidate
material in this respect would be NiGa2S4 [7–18]. In the
antiferromagnetic insulator NiGa2S4, although spins do not
order down to the lowest temperature, a weak but clear
transitionlike anomaly, which may be attributed to the
binding-unbinding of the Z2 vortices, has been observed at
T� slightly below the specific-heat broad peak temperature.
When the nonlocal measurement of the spin current
[61–63] is done on NiGa2S4, it is expected that a significant
enhancement of σsμμ, i.e., a gigantic signal in the inverse
spin Hall detector or a very-long-distance transport of spin
information, would be observed at T� as distinct evidence
for the Z2-vortex transition (see Supplemental Material
[49]). We emphasize that only σsμμ diverges at Tv, while the
static quantities C and χm do not, which is in contrast to a
ferromagnet where C and χm as well as σsμμ exhibit critical
behaviors at the transition [41,64–66]. Such a characteristic
spin-transport phenomenon may be observed also in
FeGa2S4 [19,20], NaCrO2 [21–24], and KCrO2 [25,26],
in which a putative Z2-vortex anomaly has been reported,
so that further experimental study including single-crystal
growth on these compounds is strongly awaited. We note
that, in the present system with finite ξs, perturbative
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FIG. 3. The temperature dependence of the (a) equal-time spin-
current correlation hjjs;xð0Þj2i and the (b) spin-current-relaxation
time τs, which are measured in units of jJj2 and jJj−1, respectively.
A black arrow indicates Tv and a dashed curve in (b) represents an
exponential function obtained by fitting the data above Tv (see the
main text). The inset of (a) shows the time correlation function of
the spin current hjs;xð0Þjs;xðtÞi at T=jJj ¼ 0.3.
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interactions including magnetic anisotropy D and the
interlayer coupling J03D, which may exist in real materials,
are irrelevant as long as their effective energy scale, e.g.,
DðJ03DÞξ2s , is smaller than kBTv, while in the KT transition,
ξs diverges and, thereby, they become inevitably rel-
evant [45].
In conclusion, we have theoretically shown that, in the

Heisenberg antiferromagnet on the triangular lattice, the
longitudinal spin-current conductivity exhibits a divergence
at the temperature of the Z2-vortex binding-unbinding
topological transition. Such a significant enhancement of
the spin transport is smoking-gun experimental evidence for
the so-far elusiveZ2-vortex transition, which can potentially
exist in a large variety of two-dimensional Heisenberg
magnets possessing noncollinear spin correlations.
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