
 

Novel Undamped Gapless Plasmon Mode in a Tilted Type-II Dirac Semimetal
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We predict the existence of a novel long-lived gapless plasmon mode in a type-II Dirac semimetal (DSM).
This gapless mode arises from the out-of-phase oscillations of the density fluctuations in the electron and the
hole pockets of a type-II DSM. It originates beyond a critical wave vector along the direction of the tilt axis,
owing to the momentum separation of the electron and hole pockets. A similar out-of-phase plasmon mode
arises in other multicomponent charged fluids as well, but generally, it is Landau damped and lies within the
particle-hole continuum. In the case of a type-II DSM, the open Fermi surface prohibits low-energy finite
momentum single-particle excitations, creating a “gap” in the particle-hole continuum. The gapless plasmon
mode lies within this particle-hole continuum gap and, thus, it is protected from Landau damping.
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The topological semimetal state in crystalline solids
allows for the existence of relativistic quasiparticles, which
have no analog in the Standard Model [1,2]. Protected by
crystalline symmetries, tilted type-I and type-II Dirac
(DSM) and Weyl semimetal (WSM) phases [3] are exam-
ples of this class of materials [4–7]. For a tilted DSM, the
electronic dispersion is a sum of “potential” and “kinetic”
terms, Ek ¼ Uk � Tk, where both the terms vanish at
the fourfold degenerate (including spin) Dirac point [8,9].
The first term is odd along a specific direction of k (the
“tilt” direction), while the second term has the usual form of
an anisotropic massless Dirac cone. The DSM phase is
type-II if the Dirac cone is tilted over, orUk > Tk along the
tilt direction, otherwise it is classified as type-I DSM.
Experimental realizations of a type-I DSM include Na3Bi
[10,11] and Cd3As2 [12,13] among others. Type-II DSM
phase has been identified in PtTe2 [8,9,14], PtSe2 [15], and
PdTe2 [14,16,17], among others.
The Fermi surface in a type-I DSM is an ellipsoid

enclosing a single type of carrier pocket (either electron
or hole), with a vanishing density of states at the Dirac
point. Contrarily, the Fermi surface of a type-II DSM is a
hyperboloid with open electron and hole pockets along the
tilt axis, as shown in Figs. 1(a)–1(d). The presence of both
types of carriers at the Fermi energy in a type-II DSM leads
to several interesting magnetotransport and optical proper-
ties [18,19]. Here, we explore collective density excitations
in a type-II DSM [9,20] and predict the existence of a novel
undamped gapless plasmon mode.
The presence of both electron and hole pockets at the

Fermi energy in a type-II DSM suggests the possibility of
two plasmon modes, related to the in-phase and the out-of-
phase oscillation of the density deviations in the two
electron fluids. The in-phase oscillation leads to the normal

gapped plasmon mode in three-dimensional systems [21],
while the out-of-phase oscillations generally lead to gapless
plasmon mode. A similar gapless plasmon mode has been
reported in other two-component systems, including spa-
tially separated electron liquids [22,23], bilayer graphene
[23], and spin-polarized systems [24]. However, the out-of-
phase gapless mode is generally damped, as it lies within
the particle-hole continuum (PHC) [22,23,23,24]. In con-
trast to this, we show that in type-II DSM the out-of-phase
plasmon mode is undamped.
Our demonstration of this novel gapless plasmon mode

in type-II DSM is based on hydrodynamic theory, along
with exact analytical calculation of the density response
function. The gapless plasmon mode appears beyond a
critical wave vector on account of the momentum sepa-
ration of electron and hole pockets along the tilt axis.
The hyperboloidal open Fermi surface in a type-II DSM
prohibits particle-hole excitations for vanishing energies
and finite wave vectors along the tilt axis, creating a
“PHC gap” in the single-particle excitation spectrum. The
predicted gapless plasmon mode lies within this PHC gap,
protected from Landau damping, and is long-lived for
small energies.
The oppositely tilted Dirac nodes generally appear in

pairs on different k points [4] located on the high-symmetry
rotation axis (chosen to be the ẑ axis). For simplicity,
we consider DSM hosting one pair of Dirac nodes tilted
along the ẑ axis, as in several materials [8–13,15–17,25].
A simple low-energy Hamiltonian for each Dirac node has
a block diagonal form with two 2 × 2matrices [26],Hχ and
H�

χ , where

Hχ ¼ ℏvF½χβkzσ0 þ kxσx þ kyσy þ kzσz�: ð1Þ
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Here, vF denotes the isotropic Fermi velocity, χ ¼ �1 is the
node index, σi are the Pauli spin matrices, and σ0 is the
(2 × 2) unit matrix. The case of anisotropic Fermi velocities
is discussed in the Supplemental Material [27]. Depending
on the tilt parameter β, the boundaries of the Dirac cone
along the z axis have either the opposite or same sign of
their slopes, resulting in a type-I (β < 1) or a type-II DSM
(β > 1). The energy dispersion for a given Dirac node is
given by

εχλk ¼ ℏvFðχβkz þ λkÞ; ð2Þ

with λ� 1 being the band index denoting the conduction or
valance band. The energy dispersion for both type-I and
type-II DSM is shown in Figs. 1(a) and 1(d), respectively.
The differing topology of the Fermi surfaces along the tilt
axis is evident. While the Fermi surface for each node of a
type-I DSM is a closed ellipsoid, type-II DSM has a pair of
open hyperboloid Fermi surfaces along the tilt axis.
For an electron-doped type-I DSM with a closed Fermi

surface, the structure of the PHC is very similar to that
in an isotropic DSM [28,29]. The low-energy intraband

single-particle transitions occur only for a continuous range
of q values lying within the closed Fermi surface [see
Figs. 1(b) and 1(c)]. Qualitatively, this also occurs in a type-
II DSM for q perpendicular to the tilt axis (in the x̂–ŷ
plane), as shown in Fig. 1(e).
Along the tilt axis (q ¼ qẑ) in a type-II DSM, the open

(hyperboloid) Fermi surface restricts all low-energy finite-q
intraband transitions, causing the PHC to lie between the
lines ℏω ¼ vFðβ � 1Þq. More interestingly, the coexistence
of an electron and a hole pocket in a type-II DSM results in
low-energy interband transition for q ≥ qeh. Here,

qeh ¼ 2μ=½ℏvFðβ2 − 1Þ� ð3Þ

quantifies the momentum separation between the electron
and hole pockets for a fixed μ. This produces a PHC
spectrum, which has a PHC gap in the low-energy finite-q
regime for q < qeh [see Fig. 1(f)]. (See Secs. S2 and S3 of
the Supplemental Material [27] for more details.) Below,
we show that this PHC gap hosts a novel gapless Dirac
plasmon mode.
To unveil the nature of the collective modes, we start with

the hydrodynamics approach [30]. To this end, we first
generalize the hydrodynamics approach to include (i) the
anisotropic effective mass in DSM and (ii) the presence of
two interacting charged fluids. In a type-I DSM, two electron
liquids reside in different Dirac nodes with opposite tilt,
giving them different mass. In a type-II DSM, the electron
and hole liquids having different effective mass coexist in a
single node itself. In the continuum limit, the electronic
density fluctuation of the two fluids can be expressed as
naðr; tÞ ¼ na0 þ na1ðr; tÞ, where a ¼ f1; 2g. The corre-
sponding electronic current density satisfies the local con-
tinuity equation: ∂tna þ∇ · ja ¼ 0.
For these fluids interacting via Coulomb interactions, the

Euler-Lagrange equation of motion is given by coupled
vector equations for a ¼ f1; 2g,

Ma
∂ja
∂t ¼ −na0∇r

Z
dr0

e2

jr − r0j ½n11ðr
0; tÞ þ n21ðr0; tÞ�:

ð4Þ

Here, Ma is the effective mass tensor of fluid a, and it
multiplies the column vector of ja. For simplicity, we
assume Ma to be diagonal matrix with the diagonal
elements being mai for i ¼ fx; y; zg. Using the continuity
equation to eliminate ja in Eq. (4), and by means of a
Fourier transform, we obtain the equation for the long-
wavelength dispersion of the collective modes to be

Det
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FIG. 1. Schematic of the band structure (εk) of DSM node for
a (a) type-I and (d) type-II DSM. The closed elliptic Fermi
surface with an electron pocket in a type-I DSM and the open
hyperbolic Fermi surface with an electron and a hole pocket in
type-II DSM is evident. (b),(c) The PHC along with the gapped
plasmon mode for a type-I DSM for q along the x̂ and ẑ
direction. (e),(f) The PHC and the plasmon modes of type-II
DSM along the x̂ and ẑ direction. The low-energy particle-hole
gap and the novel gapless plasmon mode (blue line) are
also shown. Here, vF ¼ 0.65 × 106 m=s, and β ¼ 0.3ð1.4Þ for
a type-I (type-II) DSM.
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Here, Vab
q is the Fourier transform of the Coulomb

interactions between fluids a and b. For electron fluids
interacting via unscreened Coulomb interaction, V11

q ¼
V22
q ¼ Vq ≡ e2=ðϵ0ϵrq2Þ. In a type-II DSM, the electron

and the hole pockets are separated in the momentum space
(by qeh), and hence, V12

q ¼ V21
q ¼ V jqþqehj.

To incorporate the anisotropic effective mass in DSM,
we use the following definition: mλ

i ¼ ℏ2ki=ð∂kiελkÞ, with
ελk denoting the electronic dispersion. This reproduces the
conventional effective mass for parabolic band systems, as
well as the cyclotron mass in graphene: m ¼ μ=v2F. For the
dispersion of Eq. (2) with μ > 0, we obtain

mλχ
fx;y;zg ¼

μ

v2F

λ

jλþ χβ cos θqj
�
1; 1;

cos θq
ðχβ þ λ cos θqÞ

�
: ð6Þ

Here, cos θq ¼ qz=q is the polar angle of q [27]. In a type-II
DSM, even for a given node with μ > 0, we have λ ¼ �1,
resulting in different effective masses for the electron and
the hole pockets.
A type-I DSM node hosts a single charged fluid for any μ

(electron liquid for μ > 0), with an anisotropic mass. Thus,
we find the conventional 3D gapped Dirac plasmons with
anisotropic dispersion and different plasmon gap depend-
ing on the direction of approach to the q → 0 limit,

ω2
pl ≈

2nee2v2F
ϵ0ϵrμ

×

� ð1þ β2Þ þOðq2Þ for q ¼ qẑ;

1þOðq2Þ for q ¼ qn̂x−y
:

ð7Þ

Here, ne ¼ 2μ3=½3π2ℏ3v3Fð1 − β2Þ2� is the total electron
density (per Dirac node for μ > 0, including spin) in a
type-I DSM. Equation (7) reproduces the known result
for the isotropic case without any tilt [29]. The plasmon
dispersion for a type-I DSM, along with the corresponding
PHC, is shown in Figs. 1(b) and 1(c).
The case of a type-II DSM hosting an electron and a hole

pocket along the kz axis is more interesting. Using Eq. (6)
in Eq. (5), the plasmon dispersion along q ¼ qẑ is given by
the roots of

ω2 ¼ n2v2Fq
2

μ
½Vqðβ þ 1Þ2 − V jqþqehjðβ − 1Þ2�: ð8Þ

Here, n2 ≈ μE2
max=ð12π2βℏ3v3FÞ denotes the cutoff (Emax)

dependent electron (and hole) density for each node (with
spin) of a type-II DSM. Equation (8) permits two solutions.
One of these is the conventional gapped plasmon mode in
the limit qz → 0, whose dispersion is given by

ω2
pl ≈

n2e2

ϵ0ϵrμ
v2Fð1þ βÞ2 þOðq2Þ; for q ¼ qẑ: ð9Þ

In the x–y plane, the plasmon gap for a type-II DSM
is identical to that of type-I DSM in Eq. (7), with the
replacement n1 → n2.
Interestingly, Eq. (8) permits another gapless solution

(for ω → 0) beyond a critical wave vector, q > qc ≡
μβ=½2ℏvFðβ − 1Þ�. Expanding the right-hand side of
Eq. (8) around qc, we find the dispersion of the novel
gapless plasmon mode (ωnpl) to be

ω2
npl ≈

8n2e2

ϵ0ϵr

ℏv3Fð1þ βÞ2
μ2β

ðq − qcÞ; for q ¼ qẑ: ð10Þ

More remarkably, this low-energy finite-q plasmon mode
lies in the PHC gap arising from the open nature of the
Fermi surface along the qz direction. Consequently, this
novel mode remains undamped (for qc < qeh; see Sec. S11
in the Supplemental Material [27]) with a large quality
factor until it enters the PHC [see Fig. 1(d)]. Physically, this
novel mode arises from the out-of-phase intranode density
oscillations of the electron and hole fluids in a type-II
DSM [31].
Note that we have adopted the hydrodynamic theory,

which works well only in the long-wavelength (q → 0)
limit, in order to find the finite-q > qc collective mode.
Thus, the qc derived here will be quantitatively different
from the exact qc calculated below, although the qualitative
behavior is identical. Going beyond the hydrodynamic
theory, we now explicitly calculate the interacting density
response function. The electron-electron interaction will be
treated within the random phase approximation (RPA).
The noninteracting density response (or Lindhard) func-

tion of a single Dirac node is given by [21,29,30,32–34]

ΠNI
χ ðq;ωÞ ¼ gs

V

X
k;λ;λ0

fðεχλkÞ − fðεχλ0kþqÞ
ℏωþ þ εχλk − εχλ0kþq

Fλλ0 ðk;qÞ: ð11Þ

Here, V is the volume, ωþ ¼ ωþ iη with η → 0, and
Fλλ0 ðk;qÞ is the orbital overlap function. The Fermi
function fðεÞ acts as a step function at T ¼ 0. The total
density response function includes both nodes: ΠNI ¼
ΠNIþ þ ΠNI

− . The analytical calculation of ΠNI for both
type-I and type-II DSM is detailed in Secs. S3 and S4
of the Supplemental Material [27]. The density response
function for an interacting electron fluid, within RPA, is
given by

ΠRPAðq;ωÞ ¼ ΠNIðq;ωÞ=ϵðq;ωÞ: ð12Þ

Here, ϵðq;ωÞ≡ 1 − VqΠNIðq;ωÞ is the dynamical dielec-
tric function. The plasmon dispersion and damping con-
stant ωplðqÞ − iγplðqÞ can now be obtained from the poles
of ΠRPAðq;ωÞ or, alternately, from the complex roots of
ϵðq;ωÞ ¼ 0. For small damping rate, an expansion of
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ϵðq;ωÞ around ωpl yields γpl ¼ ½ImðϵÞ=∂ωReðϵÞ�jωpl
> 0.

For a stable plasmon mode γpl > 0.
The dielectric function for both type-I and type-II

DSM is shown in Fig. 2 for qð¼ qẑÞ along the tilt axis.
Figures 2(a) and 2(b) for a type-I DSM show the existence
of two stable plasmon modes (same sign of Im½ϵ� and
∂ωRe½ϵ�, at the Re½ϵ� ¼ 0 crossings). The rightmost root of
Re½ϵ� ¼ 0 with a vanishingly small Im½ϵ� is the gapped 3D
Dirac plasmon mode [9,35]. The other root of Re½ϵ� ¼ 0
is the damped plasmon mode. It lies in the PHC and
corresponds to the out-of-phase oscillations of the electron
fluids in different Dirac nodes (see Fig. S2 in the
Supplemental Material [27]). The dielectric function for
a type-II DSM is shown in Figs. 2(c) and 2(d) for small
and large q along the tilt axis, respectively. For small q in
Fig. 2(c), there are two stable collective modes: the 3D
gapped Dirac plasmon and the Landau damped mode,
originating from the out-of-phase internode density oscil-
lations. This changes drastically for large qz in Fig. 2(d),
with the emergence of the novel undamped gapless plasmon
mode for qz > qc at low energies, as predicted by the
hydrodynamic theory. Physically, this mode corresponds to
out-of-phase intranode density oscillations in the electron
and hole pockets in type-II DSM [31].
Experimentally, plasmon resonances also appear as peaks

in the momentum-resolved electron energy loss spectrum
(EELS), which probes the loss function Elossðq;ωÞ ¼
−Im½1=ϵðq;ωÞ�. The loss function for the type-I and
type-II DSMs, for q along different directions, is shown

in Fig. 3. For type-I DSM, the gapped Dirac plasmon
mode with an anisotropic energy gap is evident in Figs. 3(a)
and 3(b), for q ¼ qẑ and q ¼ qx̂, respectively. The Landau
damped, out-of-phase internode plasmon mode lies within
the PHC spectrum in Fig. 3(a), and it is not clearly visible.
The RPA loss function Elossðq;ωÞ for a type-II DSM is

shown in Figs. 3(c) and 3(d), for q ¼ qẑ and q ¼ qx̂,
respectively. Figure 3(c) clearly highlights the (i) PHC gap
in the low-energy but finite-q loss spectrum for q along
the tilt axis, and (ii) the existence of the novel undamped
gapless plasmon mode (for q > qc) [36]. Our analytical
calculations for the density response function coupled with
the RPA yield the critical wave vector (for β > 1) to be

qc ≈
μ

ℏvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gsαfine

π
GðβÞ

r
; where GðβÞ ¼ β ln

β þ 1

β − 1
− 2;

ð13Þ

and αfine ¼ e2=ð4πϵ0ϵrℏvFÞ is the effective fine structure
constant. For q > qc and for low energies, the novel
gapless plasmon mode disperses as

ω2
npl ≈ v2Fðβ2 − 1Þ2GðβÞqcðq − qcÞ: ð14Þ

The ωnpl ∝ ðq − qcÞ1=2 behavior is qualitatively consistent
with the results from the hydrodynamic theory, albeit with a
different prefactor. The normal gapped plasmon mode in
both type-I and type-II DSM has an anisotropic plasmon
gap, owing to the anisotropic electronic dispersion. In a
type-II DSM, the plasmon gap ωplðq ¼ 0Þ along the tilt
axis is given by the root of the following transcendental
equation:

(a) (b)

(c) (d)

FIG. 2. The real and imaginary parts of the dielectric function
ϵðq;ωÞ for two different values of q along the tilt axis, for (a),(b)
type-I and (c),(d) type-II DSM. The shaded region depicts the
PHC, and the circles denote the zeros of ϵðq;ωÞ corresponding to
collective excitations. The blue circle is the regular gapped
plasmon, while the gray circle is the highly damped mode arising
from the out-of-phase oscillation of the electron fluids in different
nodes. The green circle in (d) is the novel gapless plasmon mode
arising from the out-of-phase oscillations of the intranode
electron-hole pockets in a type-II DSM. Other parameters are
identical to those of Fig. 1.

(a) (b)

(c) (d)

FIG. 3. The RPA loss function Elossðq;ωÞ for (a),(b) type-I and
(c),(d) type-II DSM along different directions. The anisotropic
band structure results in an anisotropic plasmon gap. The PHC
gap in the low-energy finite-q loss function and the existence of
the novel undamped plasmon mode for q along the tilt axis is
evident in (c). Other parameters are identical to those of Fig. 1.

PHYSICAL REVIEW LETTERS 124, 046803 (2020)

046803-4



ω2 ¼ μ2

ℏ2

4gsαfine
3πγðωÞ ; γðωÞ ¼ 1þ gsαfine

3π
ln

���� 4E2
max

4μ2 − ω2

����:
ð15Þ

Here, the plasmon gap scales as ωplðq ¼ 0Þ ∝ μ ∝ n, in
contrast to the ωpl ∝ n2=3 scaling in type-I DSM.
The normal gapped plasmon mode was recently

observed in PtTe2 (a type-II DSM) along the direction
perpendicular to the tilt axis (along Γ–K) by means of high-
resolution EELS (HREELS) [9,20]. HREELS analyzes the
electrons reflected by the crystal surface with an energy
resolution of a few meV [9,20] and can transfer only
momentum components parallel to the cleavage surface
(qk) [37]. Therefore, plasmons along the tilt axis (Γ–A) are
generally inaccessible to HREELS and also to other
scattering techniques used to study the dispersion relation
of low-energy collective modes, such as inelastic helium
atom scattering [38]. Conversely, momentum-resolved
EELS with transmission electron microscopy (EELS-
TEM) easily enables probing excitations along Γ–A.
Unfortunately, the energy resolution of most EELS-TEM
apparatuses (>200 meV [39]) is largely inadequate to
detect gapless excitations. Nevertheless, recent technologi-
cal advancements have been decisive in improving the
energy resolution up to 18–50 meV [40,41], with the next
target to reach 5 meV [42]. Consequently, it is expected that
in a few years the measurement of the dispersion relation of
plasmonic modes along the tilt axis (Γ–A) will be exper-
imentally feasible.
In summary, we predict a novel undamped gapless

plasmon mode in a type-II DSM, arising from the presence
of both electron and hole pockets at the Fermi energy. This
novel mode exists beyond a critical wave vector and only
along the direction of the tilt axis. Physically, it arises due
to the out-of-phase oscillation of the density deviations in
the electron and the hole pockets. Such a gapless mode can
also arise in other nontopological semimetals with open
Fermi surfaces, though its undamped nature has to be
explored carefully. A similar gapless (and possibly
undamped) plasmon mode is also expected to arise in
type-II WSM.
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