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We present a microscopic theory for collective excitations of quantum anomalous Hall ferromagnets
(QAHF) in twisted bilayer graphene. We calculate the spin magnon and valley magnon spectra by solving
Bethe-Salpeter equations and verify the stability of QAHF. We extract the spin stiffness from the gapless
spin wave dispersion and estimate the energy cost of a skyrmion-antiskyrmion pair, which is found to be
comparable in energy with the Hartree-Fock gap. The valley wave mode is gapped, implying that the valley
polarized state is more favorable compared to the valley coherent state. Using a nonlinear sigma model, we
estimate the valley ordering temperature, which is considerably reduced from the mean-field transition
temperature due to thermal excitations of valley waves.
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Introduction.—Twisted bilayer graphene (TBG) near the
magic angle hosts a plethora of phenomena, e.g., super-
conductivity [1], correlated insulators [2], nematicity [3,4],
large linear-in-temperature resistivity [5,6], quantum
anomalous Hall effect (QAHE) [7,8], etc. Because of this
richness, TBG and related moiré systems are currently
under intense experimental [1–18] and theoretical [19–62]
study. For QAHE, which is the focus of this Letter, moiré
bilayers emerge as a new and clean system [8,9] to realize
Chern insulators at elevated temperatures compared with
the magnetic topological insulators [63].
Moiré superlattices in van der Waals bilayers not only

generate nearly flat bands but also often endow the bands
with nontrivial topology. In moiré systems with valley
contrast Chern numbers, the enhanced electron Coulomb
repulsion effect due to band flattening can spontaneously
break the valley degeneracy, and therefore, lead to valley
polarized states with QAHE [49–55]; we term such bulk
insulating states as quantum anomalous Hall ferromagnets
(QAHFs), in analogy with the well-known quantum Hall
ferromagnets (QHFs) [64,65]. In pristine TBG, Ĉ2z sym-
metry (a twofold rotation around the out-of-plane axis)
combined with time-reversal symmetry forbids Berry
curvature. However, this Ĉ2z symmetry can be explicitly
broken when TBG is aligned to the hexagonal boron nitride
(hBN) substrate, generating a nonzero valley Chern num-
ber. It is in this extrinsic TBG aligned with hBN where the
anomalous Hall effect [7] and later its quantized version
(QAHE) [8] have been observed at the filling factor ν ¼ 3.
Here we define ν as n=n0, where n is the electron density
and n0 the density for one electron per moiré unit cell.
In this Letter, we theoretically study the collective

excitations in the TBG QAHF in order to examine the

QAHF stability and to determine the low-energy excita-
tions that control the transport gap and that limit the
ferromagnetic transition temperature. The ν ¼ 3 QAHF
in extrinsic TBG has two distinct collective excitations, i.e.,
spin magnons and valley magnons, which involve particle-
hole transitions with, respectively, a single spin flip and a
single valley flip. We calculate the energy spectra sepa-
rately for the two types of magnons by solving their Bethe-
Salpeter equations. The calculated excitation spectra
indicate that the TBG QAHF is generally robust against
small particle-hole fluctuations when the bulk Hartree-Fock
gap (ΔHF) is finite. The spin magnon spectrum has a gapless
spin wave mode, which is the Goldstone mode due to the
spontaneous breaking of the spin SU(2) symmetry in the
ν ¼ 3 QAHF. We extract spin stiffness from the long-
wavelength spin wave dispersion and estimate the skyrmion
energy. We find that the energy Δpair for a pair of skyrmion
and antiskyrmion in the TBGQAHF is comparable in energy
with ΔHF, and either Δpair or ΔHF can be the lowest charged
excitation gap depending on the details of the system.
In a two-dimensional system such as TBG with spin

SU(2) symmetry, the spin ordering temperature vanishes
according to the Mermin-Wagner theorem. However,
QAHE in TBG can arise purely from an orbital effect,
e.g., valley polarization. An important distinction between
spin and valley is that there is only a valley U(1) symmetry
in TBG in contrast to the spin SU(2) symmetry. The ν ¼ 3
QAHF preserves the valley U(1) symmetry but breaks the
discrete time-reversal symmetry, which allows a finite
valley ordering temperature TV . We estimate TV based
on the fully gapped valley magnon spectrum and find that
TV is reduced from the mean-field transition temperature
due to thermal excitations of valley waves, which provides
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an explanation for the experimentally observed hierarchy
that the transport energy gap of the TBG QAHF is larger
than the corresponding Curie temperature [8].
Ferromagnetism.—We calculate the moiré band struc-

ture of TBG using the continuum Hamiltonian [66], with
details given in the Supplemental Material [67]. We use
parameter Δb (Δt) to describe the sublattice potential
difference in the bottom (top) graphene layer and take
ðΔb;ΔtÞ ¼ ð30; 0Þ meV [68] in order to simulate the
experimental situation [7,8] where TBG is in close align-
ment to one of the two (either top or bottom) encapsulating
hBN layers. The corresponding moiré band structure in the
þK valley at twist angle θ ¼ 1.15° is shown in Fig. 1,
where the first moiré conduction and valence bands are
separated by an energy gap about 4 meV (opened up byΔb)
and, respectively, carry a Chern number C of þ1 and −1.
Because of time-reversal symmetry, the first moiré con-
duction (valence) band in the −K valley has a C value of
−1 (þ1).
We study a minimal interacting model by retaining only

the first moiré conduction band states, assuming that all
valence band states are filled. The projected HamiltonianH
has the single-particle term H0 and the interacting termH1,

H0 ¼
X
k;τ;s

εk;τc
†
k;τ;sck;τ;s;

H1 ¼
1

2A

X
Vðττ0Þ
k1k2k3k4

c†k1;τ;sc
†
k2;τ0;s0

ck3;τ0;s0ck4;τ;s;

Vðττ0Þ
k1k2k3k4

¼
X
q

VðqÞOðτÞ
k1k4

ðqÞOðτ0Þ
k2k3

ð−qÞ;

OðτÞ
kk0 ðqÞ ¼

Z
dreiq·rΦ�

k;τðrÞΦk0;τðrÞ; ð1Þ

where c†k;τ;s, εk;τ, and Φk;τ are, respectively, the fermion
creation operation, moiré band energy, and wave function
of the first conduction band state with spin label s, valley
index τ, and momentum k. Because of the time-reversal
symmetry, εk;τ ¼ ε−k;−τ and Φk;τ ¼ Φ�

−k;−τ, where k is

measured relative to the moiré Brillouin zone center Γ̄
point. In H1, A is the system area, OðτÞ

kk0 ðqÞ is the density
matrix element, and VðqÞ is the screened Coulomb poten-
tial 2πe2 tanhðqdÞ=ðϵqÞ, where ϵ is the effective dielectric
constant, and d is the vertical distance between TBG and
the top (bottom) metallic gates. We take d to be 40 nm as in
the experiment of Ref. [8] and ϵ as a free parameter since
screening in TBG can be quite complicated. The dielectric
screening from the encapsulating hBN should set a lower
bound on ϵ, leading to ϵ > 5 in our model. ϵ also effectively
controls the ratio between interaction and bandwidth. In
TBG, the bandwidth near the magic angle is not exactly
known experimentally, which is another good reason to
take ϵ as a free parameter.
Hamiltonian H has spin SU(2) and valley U(1) sym-

metry. We use the Hartree-Fock (HF) approximation and
assume that the valley U(1) symmetry is preserved but
allow spin and valley polarization, which leads to the
following mean-field Hamiltonian

HMF ¼
X
k;τ;s

Ek;τ;sc
†
k;τ;sck;τ;s;

Ek;τ;s ¼ εk;τ þ
1

A

X
k0;τ0;s0

Vðττ0Þ
kk0k0knFðEk0;τ0;s0 Þ

−
1

A

X
k0
VðττÞ
kk0kk0nFðEk0;τ;sÞ; ð2Þ

where the quasiparticle energy Ek;τ;s includes moiré band
energy and Hartree as well as Fock self-energies, and nF is
the Fermi-Dirac occupation number.
We focus on integer filling factors ν ¼ 1, 2, and 3, and

make a zero-temperature (T ¼ 0) ground state ansatz so that
ν out of the 4 first moiré conduction bands (including
spin and valley degeneracies) is filled, while the remaining
4 − ν bands are empty. At ν ¼ 1 and 3, the ansatz leads to
maximally spin and valley polarized states,which areQAHF
and also exact eigenstates of the Hamiltonian H. At ν ¼ 2,
this ansatz generates two distinct types of states, namely, a
valley polarized state with QAHE and a valley unpolarized
state without QAHE, which are energetically degenerate at
this particular filling, but it is conceivable that a short-range
atomic scale interaction (not included in ourHamiltonianH)
may break this degeneracy. We calculate the T ¼ 0 HF
energy gap ΔHF between empty and occupied bands, as
shown in Fig. 2(a). A positiveΔHF indicates the above ansatz
is a good candidate for ground states at least in the HF
approximation. As expected,ΔHF decreases with increasing
dielectric constant ϵ because of the decreasing interaction
strength.ΔHF has a strong filling factor dependence, mainly
because the Hartree self-energy varies strongly with the
electron density [29]. The gap ΔHF at ν ¼ 3 is smaller
compared to those at ν ¼ 1 and 2 for small ϵ, but this order is
reversed for large ϵ. By fitting to the experimental ν ¼ 3 gap
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FIG. 1. (a) The þK-valley moiré band structure with θ ¼ 1.15°
and ðΔb;ΔtÞ ¼ ð30; 0Þ meV. (b) Berry curvature Ω of the first
moiré conduction band in (a). We use a definition of Ω such that
an occupied band with a Chern number C contributes þCe2=h to
the Hall conductivity σxy.

PHYSICAL REVIEW LETTERS 124, 046403 (2020)

046403-2



(∼2 meV) reported in Ref. [8], we estimate ϵ to be about 30
in our model.With this value of ϵ, we find that the ν ¼ 1 and
2 states are not fully gapped in contrast to ν ¼ 3, which is
consistent with experimental findings in Ref. [8]. Therefore,
our minimal model does capture the essential experimental
phenomenology [8] provided ϵ is tuned to simulate screen-
ing of Coulomb interaction, most likely by all the other
moiré bands neglected in our theory.
We show the calculated mean-field ferromagnetic tran-

sition temperature TMF at ν ¼ 3 in Fig. 2(b). TMFðϵ ¼ 30Þ
is about 22 K, which is larger than the experimental Curie
temperature (∼9 K) [8]. We argue that this discrepancy is
due to valley wave excitations, which limit the valley
ordering temperature, as will be discussed in the following.
The anomalous Hall conductivity σyx at ν ¼ 3 is quantized
to e2=h within 0.3% accuracy up to T ¼ 3 K as shown in
Fig. 2(b). We numerically find that TMF marks a first-order
transition between phases with and without spin-valley
polarization, which leads to a jump in σyx at TMF [Fig. 2(b)].
Remarkably, the experimental anomalous Hall resistance
Rxy in Ref. [8] also displays a sizable jump near the Curie
temperature.
Spin wave.—We examine the stability of the QAHF by

studying the collective excitation spectrum. The spin
magnon state at ν ¼ 3 can be parametrized as follows:

jQiS ¼
X
k

zk;Qc
†
kþQ;þ;↓ck;þ;↑jν ¼ 3i; ð3Þ

where jν ¼ 3i is the QAHF state in which only the valley
þK and spin ↓ band is empty, zk;Q are variational
parameters, and Q defined within the first moiré Brillouin

zone is the momentum of the magnon. In the magnon
state jQiS, we make a single spin flip from the occupied
spin ↑ band to unoccupied spin ↓ band within the same
þK valley. Variation of the magnon energy with respect
to zk;Q leads to the following eigenvalue problem:

ESðQÞzk;Q¼
X
k0
HðQÞ

kk0 zk0;Q;

HðQÞ
kk0 ¼ðEkþQ;þ;↓−Ek;þ;↑Þδk;k0−

1

A
VðþþÞ
k0ðkþQÞðk0þQÞk; ð4Þ

where the first part inHðQÞ
kk0 is the quasiparticle energy cost of

the particle-hole transition, and the second part represents
the electron-hole attraction. Equation (4) is typically called
the Bethe-Salpeter equation representing repeated electron-
hole interactions (“ladder diagrams”), in the context of
excitons in semiconductors; here it gives rise to the spin

wave spectrum. We note that HðQÞ
kk0 is not gauge invariant

(except at Q ¼ 0) due to the phase ambiguity of the wave
function. However, only closed loops in the momentum

space appear in the characteristic polynomial of HðQÞ
kk0 ,

making its eigenvalues gauge invariant; products of wave
function overlap along the closed loops encode information
of Berry curvature and quantum geometry [69].
We numerically solve Eq. (4) and show the spin excitation

spectrum in Fig. 3. The lowest energy mode (spin wave) is
gapless at Q ¼ 0, which is expected from Goldstone’s
theorem, as the continuous spin SU(2) symmetry is sponta-
neously broken in the QAHF. Because of the spin SU(2)
symmetry, the spin lowering operator

P
k c

†
k;τ;↓ck;τ;↑ com-

muteswith theHamiltonianH. Therefore, zk;Q ¼ 1 for any k
is an exact zero-energy solution to Eq. (4) at Q ¼ 0. The
overall spin excitation spectrum is nonnegative in the
parameter space that we have explored (ϵ up to 30), showing
the stability of the QAHF at ν ¼ 3 against spin wave
excitations.
The spin wave mode can be phenomenologically

described using an Oð3Þ nonlinear sigma model [70]

LS ¼ −
Z

d2r

�
ℏn0
2

A½m� · ∂tmþ ρs
2
ð∇mÞ2

�
; ð5Þ

where the unit vector m represents the local spin polari-
zation, A½m� is the effective spin gauge field defined by
∇m ×A½m� ¼ m, and ρs the spin stiffness. We estimate ρs
by fitting the numerical spin wave spectrum around Q ¼ 0
shown in Fig. 3 to the analytical spin wave dispersion
ESW ¼ ð2ρs=n0ÞQ2 given by Eq. (5). In addition to spin
waves, the Lagrangian LS also supports skyrmion excita-
tions, which are expected to be charged in the case of
QAHF, similar to the QHF case [64]. A pair of skyrmion
and antiskyrmion has a total energy cost of Δpair ¼ 8πρs.
We calculate Δpair using ρs estimated above, and find that
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FIG. 2. (a) Charged excitation gap as a function of dielectric
constant ϵ. The solid lines are the HF gap ΔHF, respectively, for
the three integer filling factors. The dashed line is the skyrmion-
antiskyrmion pair energy Δpair at ν ¼ 3. The inset schematically
illustrates the QAHF at ν ¼ 3. (b) Transition temperature at ν ¼ 3
as a function of ϵ. The solid line shows the mean-field transition
temperature TMF, and the dashed line shows the valley ordering
temperature TV estimated using the valley wave spectrum. The
inset presents the mean-field value of the anomalous Hall
conductivity σyx, where the dashed line marks a jump in σyx at
TMF. All calculations with interaction effects are done on a 36 ×
36 k mesh.
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Δpair is comparable in magnitude to ΔHF, but the former is
larger at ν ¼ 3, as shown in Fig. 2(a). We find that the same
(Δpair > ΔHF) is also true at ν ¼ 1 and 2 for spin maximally
polarized states. By comparison, Δpair is half of ΔHF for the
ν ¼ 1 quantum Hall ferromagnet in the lowest Landau level
with Coulomb interaction [64]. An important difference
here with the lowest Landau level is that electron density in
the moiré band is spatially nonuniform with modulation
within the moiré unit cell, and both the Hartree and Fock
self-energiesmodify themoiré bandwidth. Nevertheless, we
find thatΔpair can be tuned to be smaller thanΔHF in TBGby
taking both Δb and Δt to be finite (30 meV), which can be
realized when both the top and bottom encapsulating hBN
layers are in close alignment to TBG (see Supplemental
Material [67] for details). Therefore, we conclude that the
lowest charged excitation is determined by either ΔHF or
Δpair, depending on system details.
Valley wave.—In addition to spin magnon states, there

are also valley magnon states with a single valley flip

jQiV ¼
X
k

zk;Qc
†
kþQ;þ;↓ck;−;sjν ¼ 3i; ð6Þ

where s can be either ↑ or ↓, since both spin components in
the −K valley are fully occupied in jν ¼ 3i. States jQiV
with s ¼ ↑ and ↓ are energetically degenerate for the
Hamiltonian H because it actually has an enlarged spin
SUð2Þ×SUð2Þ symmetry (independent spin rotation
within each valley). The corresponding Bethe-Salpeter
equation is given by

EVðQÞzk;Q ¼
X
k0
WðQÞ

kk0 zk0;Q;

WðQÞ
kk0 ¼ ðEkþQ;þ;↓ − Ek;−;sÞδk;k0 −

1

A
Vð−þÞ
k0ðkþQÞðk0þQÞk;

ð7Þ

which leads to the valley excitation spectrum in Fig. 4. In
contrast to the spin excitation spectrum, the lowest valley
excitation mode (valley wave) is gapped, consistent with

the fact that there is no continuous symmetry broken in the
valley pseudospin space. The positive-energy valley wave
indicates the robustness of ν ¼ 3 QAHF against small
variation in the valley space, which implies that the valley
polarized state is energetically more favorable than the
valley coherent state [53]. The valley wave can again be
described by a nonlinear sigma model but with an Ising
anisotropy

LV ¼ −
Z

d2r

�
ℏn0
2

A½π� · ∂tπ − uπ2z þ
ρz
2
ð∇πzÞ2

þ ρ⊥
2
½ð∇πxÞ2 þ ð∇πyÞ2�

�
; ð8Þ

where the unit vector π represents the local valley polari-
zation (πz for valley Ising order and πx;y for valley coherent
order), u > 0 captures the Ising anisotropy, ρz;⊥ are aniso-
tropic valley stiffness, and other terms are similar to those in
Eq. (5). The analytical valley wave dispersion is EVW ¼
ΔV þ ð2ρ⊥=n0ÞQ2, where ΔV ¼ 4u=n0. Therefore, we can
estimate u and ρ⊥ using the numerical valley excitation
spectrum in Fig. 4.
Because of the Ising anisotropy, there can be valley

domain excitations. We make a domain wall ansatz
ðπx; πy; πzÞ ¼ ½sechðx=λÞ; 0; tanhðx=λÞ�, and its energy cost
is minimized by taking the domain wall width λ to beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðρ⊥ þ 2ρzÞ=ð6uÞ
p

. The domain wall energy per length is
then J ¼ 4uλ. We note that this domain wall separates
regions with opposite Chern numbers and binds one-
dimensional chiral electronic states. The valley Ising order-
ing temperature limited by the proliferation of domain
walls can be estimated to be [71,72]

kBTDW ¼ 2

lnð1þ ffiffiffi
2

p Þ Jλ ≈ 2.62

�
λ

aM

�
2

ΔV; ð9Þ

where aM is the moiré period. ΔV can be directly extracted
from the valley wave spectrum, but λ cannot because EVW
has no dependence on ρz. Since aM is the lattice scale in our
problem, we argue that the domain wall width λ is larger
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FIG. 3. Excitation spectrum for ν ¼ 3 spin magnon states [inset
in (a) for illustration]. The blue lines in (a) and (b) represent the
gapless spin wave mode.
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FIG. 4. Excitation spectrum for ν ¼ 3 valley magnon states
[inset in (a) for illustration]. The blue lines in (a) and (b) represent
the gapped valley wave mode.
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than aM, and therefore, we estimate that kBTDW > 2.62ΔV .
On the other hand, valley waves are already thermally
excited when kBT exceedsΔV . Therefore, we conclude that
the valley ordering temperature TV is mostly limited by
valley waves instead of domain walls, and estimate kBTV
from the valley wave minimum energy. The resulting TV is
shown in Fig. 2(b), which is below the mean-field transition
temperature TMF. For a zero-temperature charged excita-
tion gap of 2 meV, we find a corresponding TV of about
11 K, which compares well with the experimental Curie
temperature [8]. Although this good quantitative agreement
with experiment might be a coincidence, our work estab-
lishes the emergent TBG QAHF to be likely a valley Ising
ordered state. Regarding the finite jump in the experimen-
tally measured Rxy near the transition temperature [8], we
provide a possible theoretical scenario that the interplay
between the continuous spin order parameter m and the
Ising degree of freedom πz through higher-order coupling
terms (not included in LS and LV) could change the finite-
temperature phase transition from second order to first
order [73].
Discussion.—In summary, we present a microscopic

theory for spin and valley waves of QAHF in TBG and
demonstrate that the excitation spectra provide important
information about the stability of mean-field state, the
transport energy gap, and the valley ordering temperature.
We find that TBG QAHF is robust, provided that other
effects such as disorder can be neglected. In addition to
ferromagnetism, flat moiré bands can host a rich set of
broken symmetry states. Our theory can be generalized to
study collective excitations of other broken symmetry
states in moiré materials.
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Note added.—Recently, three related arXiv preprints [74–
76] appeared. In this Letter, we addressed valley ordering
temperature limited by valley wave excitations, which has
not been studied previously in TBG to our knowledge.

[1] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[2] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature
(London) 556, 80 (2018).

[3] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M.
Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone,

C. Dean, A. Rubio, and A. N. Pasupathy, Nature (London)
572, 95 (2019).

[4] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R.
Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael et al., Nat.
Phys. 15, 1174 (2019).

[5] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-
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