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Alternating current RLC electric circuits form an accessible and highly tunable platform simulating
Hermitian as well as non-Hermitian (NH) quantum systems. We propose here a circuit realization of NH
Dirac and Weyl Hamiltonians subject to time-reversal invariant pseudomagnetic field, enabling the
exploration of novel NH physics. We identify the low-energy physics with a generic real energy spectrum
from the NH Landau quantization of exceptional points and rings, which can avoid the NH skin effect and
provides a physical example of a quasiparticle moving in the complex plane. Realistic detection schemes
are designed to probe the flat energy bands, sublattice polarization, edge states protected by a NH energy-
reflection symmetry, and a characteristic nodeless probability distribution.
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Introduction.—Hermiticity of Hamiltonians has long
been a required ingredient in any self-consistent framework
of quantum theory for both the stationary and time-
dependent problems. There has been an increasing effort
aimed at understanding the phenomena resultant from
relaxing the Hermiticity condition both as a theoretical
challenge and as a description of various physical systems
[1]. Theoretical and experimental efforts were largely
ignited by the recognition of the parity-time (PT ) sym-
metry [2,3], its realization in optics [4–6], and further
generalizations [7,8]. In physical systems non-Hermiticity
can arise through incorporating loss or gain but also by
viewing Hermitian systems from new angles, including
vortex pinning in superconductors [9], topological surface
state [10,11], and quasiparticles with self-energy correction
[12–15]. Important developments have recently been
focused on the classification of new phases [16–27], the
bulk Fermi arc and line structures [12,15,28,29] and the
anomalous bulk-boundary correspondence with the skin
effect where macroscopically many states are localized at
the boundary [30–41]. Of particular importance are the
generic exceptional degeneracies—exceptional point (EP)
in two dimensions (2D) and exceptional ring (ER) in three
dimensions (3D)—in the complex energy spectrum where
two resonances match at once in position and width
[42–47]. Signatures have been experimentally observed
in microwave cavities [48,49], exciton-polariton systems
[50], and photonic lattices [51,52].
In this Letter we discuss a new family of phenomena

arising from applying magnetic field to nontrivial non-
Hermitian (NH) systems. This problem has remained
largely unexplored owing to the lack of a feasible realiza-
tion which we overcome here by considering a convenient
synthetic platform based on alternating current (ac) circuits.
Periodic arrays of capacitors and inductors are known to

simulate the physics of electrons in crystal lattices and can
model various topological phases [53–65]. We introduce
NH effects by including dissipative resistance in such
arrays. Pseudomagnetic fields (PMFs) can be generated
by spatially varying certain electric elements, which
extends to the NH case the PMF realized by elastic strain
in relativistic electron systems [66–72]. The NH effects
generically turn relativistic band crossings into exceptional
degeneracies. Interplay with the PMF then results in
a novel NH low-energy theory of bulk states which have
a real energy spectrum and are free from the skin
aggregation effect. In addition such systems exhibit novel
edge states protected by strong NH energy-reflection
symmetry and realize a physical analog of a particle
moving in the complex domain. We explain how these
remarkable phenomena can be detected via conventional
electric measurements.
Circuit realization.—Based on the Kirchhoff current law

(KCL), one can apply the node analysis to an ac circuit at
frequency ω. The Euler-Lagrange equation for the node
flux variable φj given the external current ij injected at
node j reads

d
dt

∂L
∂ _φj

−
∂L
∂φj

þ ∂D
∂ _φj

¼ ij; ð1Þ

where for capacitors and inductors LC ¼ C
2
_φ2, LL ¼

− 1
2Lφ

2 while Rayleigh dissipation function D ¼ 1
2R _φ2

describes resistors. These equations form an admittance
problem, Jv ¼ i, where the admittance matrix J determines
the voltage response v ¼ _φ in the circuit to an array of
injected currents i ¼ ði1; i2;…; iNÞ. At any fixed frequency
J can be mapped to a tight-binding Hamiltonian H ¼ −iJ
with hopping amplitudes ωC ð−1ωLÞ for nodes connected by a
capacitor (inductor) while a NH hopping i=R accounts for
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any resistor and hence HðR ↦ −RÞ ¼ H†. Lossless LC
circuits can fully simulate ordinary time-reversal (T ) invari-
ant quantum Hamiltonians as the π-phase difference
between L, C hoppings suggests. This remains true in the
presence of PMF which couples to Dirac or Weyl nodes in a
way that respects T . Solving the eigenproblem Hjψαi ¼
Eαjψαi corresponds to finding a spatial pattern of currents iα
that produces the identical pattern of voltages iEαvα ¼ iα.
We discuss later how circuit tomography connects standard
impedance or voltage measurements with the energy spec-
trum and the wave function of the quantum problem.
Here we focus on periodic circuits described by a family

of two-band Bloch Hamiltonians hðkÞ ¼ d01þP
i diσi

where psuedospin σ stands for inequivalent nodes A, B. As
described in Supplemental Material [73], following the
mapping between quantum model and ac KCL, a square-
lattice circuit depicted in Fig. 1 can realize a variety of
Hamiltonians of this type. Specifically, the circuit in Fig. 1
is described by

dx ¼ iγ − κ1 þ κ cos ky − tx cos kx;

dy ¼ ty sin ky − κ2 sin kx; ð2Þ

with a staggered on site potential dz ¼ Δ. The relation to
circuit element parameters is γ¼ 1

R, κ1¼ 1
ωL0, κ¼ty¼ωC0,

tx ¼ 1
ω ð 1

L1 þ 1
L2Þ, κ2 ¼ 1

ω ð 1
L2 − 1

L1Þ, and Δ ¼ 1
2ω ð 1

LA − 1
LBÞ.

Gain from the negative impedance converter (NIC) com-
pensates for the loss incurred in the resistor R enabling
unimpeded signal propagation through the array [74–77].
Dissipation for NH effect and spatially nonuniform
elements for PMF can make d0, respectively, complex
and inhomogeneous as per the mapping. As explained in
the Supplemental Material, the NIC element acting as a
static negative resistor, together with other tunable
grounded elements, guarantees a real-valued and uniform
d0 in analogy to a controllable chemical potential.

The circuit in Fig. 1 realizes relativistic band structures
similar to graphene in a simpler square lattice. When
γ ¼ Δ ¼ κ2 ¼ 0 and κ ¼ κ1, the Hermitian spectrum Ek
of hðkÞwithout PMF, exhibits a pair of Dirac points located
at ð� π

2
; 0Þwith Fermi velocity viF ¼ ti in the i direction. As

illustrated in Fig. 2 inclusion of the dissipative term iγσx
with γ > Δ splits each Dirac point into a pair of EPs at
ð� π

2
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − Δ2

p
=vyFÞ at low energy. Each EP pair is

connected by a bulk Fermi arc, indicated by dashed lines
in Fig. 2, along which the real part ℜEk of the two bands
touches [12,15] (see also Sec. III in the Supplemental
Material [73]). We also consider a 3D cubic lattice non-
centrosymmetric model of four parallel Weyl ERs depicted
in Fig. 2 and constructed by layering the 2D EP circuit
along the z axis with interlayer connections determined by
dz ¼ −tz cos kz [73].
A special feature of relativistic dispersions lies in that

spatially varying hopping amplitudes can act as vector
potentials chirally coupled to the low-energy excitations
[66–69]. This feature naturally extends to the excep-
tional degeneracies when NH terms are included. A
linear variation along the x direction in inductances of
the red elements in Fig. 1 produces spatial variation of
the Hamiltonian parameter κ2 ¼ vyFbx and dictates open
boundary along x. In the low-energy theory this man-
ifests as a Landau gauge Ay ¼ bx giving rise to a
uniform PMF bẑ. Vector potential Ax ¼ −by can also be
realized by varying κ1 ¼ κ − vxFby along the y direction
with open edges, see Fig. S1 in the Supplemental
Material [73].
NH exceptional Landau levels.—Band structure of the

EP circuit is displayed in Fig. 3, where exceptional
degeneracies are eliminated by the PMF illustrated in
Fig. 2. Surprisingly, the resulting Landau-level-like
flat bands exhibit spectra with consistently vanishing
imaginary part around the exceptional degeneracies.
To understand this remarkable feature we first develop
a low-energy theory of this NH Landau quantization of
exceptional degeneracy and then discuss the origin of
purely real spectrum.
The low-energy Hamiltonian around the exceptional

region with the magnetic field bẑ indicated in Fig. 2 reads

FIG. 1. RLC circuit simulating a quantum system with Dirac
dispersions which turn into exceptional degeneracies upon
inclusion of NH effects. PMF defined by gauge potential Ay ¼
bx can be generated by varying the red elements along the x
direction. Linear variation, required for uniform PMF, dictates
open boundary condition along x.

FIG. 2. Exceptional degeneracies in 2D and 3D circuit models
generated by NH terms. Dashed bulk Fermi arc connects two
EPs. Real energy spectrum emerges when PMF b takes the
direction noted. In circuit calculations, we fix b ¼ bẑ for one
exceptional degeneracy region as indicated.
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h ¼
X
i¼x;y

ðviFΠi þ iγiÞσi þ Δσz ¼
� Δ Ebfþ
Ebf− −Δ

�
; ð3Þ

where viF; b > 0, Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vxFv

y
Fb

p
and Πi ¼ pi − Ai.

Momentum operator pi ¼ −i∂i may be replaced by ki
along the periodic direction of the circuit. Δ is replaced by
vzFkz for the 3D ER case. Furthermore

f∓ ¼ ðvxFΠx � ivyFΠy þ iγx ∓ γyÞ=Eb: ð4Þ

The first observation is that ½f−; fþ� ¼ 1 formally holds,
even though f†− ≠ fþ. Second, if f−ϕ0 ¼ 0 has a physical
square-integrable solution, one can construct a tower of NH
Landau levels (LL) through the wave function ansatz ψn ¼
ðαϕn; βϕn−1ÞT for n ¼ 0; 1; 2;… where ϕ−1 ¼ 0 and
ϕn>0 is obtained by the relation fþϕn ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ϕnþ1,

f−ϕn ¼
ffiffiffi
n

p
ϕn−1. An explicit calculation then gives energy

of the nth NH LL (LLn) ELLn� ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2þnE2

b

q
when n ≥ 1

and ELL0þ ¼ Δ when n ¼ 0, which is isospectral to the
Hermitian counterpart. The construction is valid for arbi-
trary γx, γy but breaks down in the presence of nonzero
iγzσz. As this tilts the ER plane, requiring PMFkER is thus
the major difference in the 3D case in Fig. 2.
For the above procedure to work it is essential to ensure a

physical solution of f−ϕ0 ¼ 0, the existence of which is not

guaranteed in the NH case. Imagine for instance a spatially
linear modulation of the resistors in the circuit, which can
introduce an imaginary-valued vector potential, e.g., Ax ¼
−iby and hence ½f−; fþ� ¼ i with a tower of complex LLs.
In this case, however, a normalizable bounded solution of
f−ϕ0 ¼ 0 does not exist [80]. We proceed as an example
with our real-valued Ax ¼ −by that has a valid normalized
wave function

ϕn ¼ ð ffiffiffi
π

p
lbn!2nÞ−1

2e−ðy−y0Þ
2=2l2bþγyyHn½ðy − y0Þ=lb� ð5Þ

where y0 ¼ −ðkx þ iγxÞ=b, magnetic length lb ¼ b−1=2 and
HnðzÞ is the Hermite polynomial valued in the complex z
plane. Note that γx renders ϕn complex valued while γy
breaks its symmetry with respect to the Hermitian oscil-
lation center y ¼ −kx=b. Henceforth we mainly consider
the case with γy ¼ 0 which emerges naturally from our
circuit realization. In general, NH systems have the
potential for skin effect, which deviates from the Bloch
band theory and the conventional bulk-boundary corre-
spondence [30–34,36]. Remarkably here, not only is any
possible skin aggregation suppressed in the low-energy
regime as dictated by the bulk magnetic confinement
around y0 at the length scale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1=2

p
lb, but also the

NH quasiparticle is now oscillating along a complex y-
direction line centered at y0. Therefore, this NH system
under magnetic field indicates a new way to avoid the skin
effect and provides a concrete example of a quasiparticle
moving in the complex domain. This latter scenario is
justified by the Hermite function actually being holomor-
phic on C, although it is usually viewed solely as a real
function in conventional quantum problems. The ortho-
normality,

R
∞
−∞ dyϕnðzÞϕmðzÞ ¼ δmn with z ¼ ðy − y0Þ=lb,

follows from analytic continuation. This way, one can also
interpret the problem as analytically continuing the particle
motion to the complex domain.
Spectral properties.—Our NH low-energy theory has a

real spectrum under finite PMF although it is not PT
symmetric. To understand this one can formalize the above
physical interpretation of a quasiparticle moving in the
complex plane by defining an operator ρ ¼ diagðeϵ·p; eϵ·pÞ
that translates the system in real space along the imaginary
direction by ϵ ¼ 1

b ẑ × γ for γ ¼ γxx̂. The pseudo-
Hermiticity [7,8], a necessary but not sufficient condition
for a real spectrum, ηhη−1 ¼ h†, holds here via a positive
semidefinite Hermitian automorphism η ¼ ρ†ρ. In addition
one can deduce the spectral reality via a similarity trans-
formation ρhρ−1 ¼ h0 ¼ hðγ ¼ 0Þ which in general pre-
serves the spectrum and maps h to a Hermitian Hamiltonian
with a spectral expansion h0 ¼

P
n Enjφnihφnj of real-

spectrum conventional LLs. Then the left and right eigen-
states, corresponding to Eq. (5), respectively, of h† and h
are given by jψLðRÞ

n i ¼ ρ−1ð†Þjφni. Hence the biorthogonal
representation [1,81], h ¼ P

n EnjψL
n ihψR

n j, naturally
follows. The aforementioned orthonormality based on

(a)

(b)

(c)

(d)

FIG. 3. Band structure of the 100 × 100 square lattice EP
circuit. Panels (a), (b) have open boundaries along x realizing
armchair-like bands under gauge Ay ¼ bx while panels (c),
(d) have open boundaries along y realizing zigzag-like bands
under gauge Ax ¼ −by. 3DWeyl ER case at kz ¼ π

2
þ Δ=tz is the

same as (c), (d). (See the Supplemental Material [73] for extended
discussion of the b ¼ 0 case.) We set ti ¼ 1, unmodulated
κ ¼ κ1 ¼ 1, κ2 ¼ 0, and Δ ¼ 0.02, γ ¼ 0.03, b ¼ 0.009.
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NH Hermite functions helps prove herein the general
pseudo-Hermitian orthonormality and biorthonormality
hψL

mjηjψL
n i ¼ hψR

mjψL
n i ¼ δmn.

Physically, the magnetic field in a relativistic system is
crucial to the above reasoning. The phenomenon can be
viewed as cancelling γ by absorbing it into the vector
potential A in the kinetic term. This relies on A depending
linearly on the spatial coordinate, necessary to give a
uniform b field. One may wonder about the dual picture
of translating by γ in the imaginary direction of the
momentum space by using eγ·x in ρ with position operator
x, which actually explains under the gauge used the eγyy

factor in Eq. (5) by setting γ ¼ γyŷ. It also relies on a finite
b, otherwise the wave function jψLðRÞ

n i is unbounded.
Therefore, magnetic field imparts a nonperturbative change
to the system. The phenomenon and interpretation applies
as well to the symmetric gauge, which we employ to
construct the NH ground state and coherent state in the
Supplemental Material [73].
Detection schemes.—Based on the KCL construction,

one can readily predict the directly measurable electrical
response of the circuit. We consider two types of circuit
tomography assuming system size Lx × Ly, (i) impedance
scan Zs0s

ðx;0Þ;ðx;yÞðd0Þ reflecting a direct impedance measure-
ment between two points ðx; 0; s0Þ and ðx; y; sÞ, and
(ii) voltage scan Vs0s

ðx0;y0Þ;ðx;yÞðd0Þ probing voltage at any
node ðx; y; sÞ in response to a current input at the midpoint
y0 ¼ Ly=2 of the x0 ¼ 0, Lx=2 lines, where s; s0 ¼ A, B.
We derive in the Supplemental Material [73] expressions
for both quantities in terms of left and right eigenstates of
the NH Hamiltonian.
Several observations can be made based on the predic-

tions for impedance and voltage scans in Fig. 4. First, in
order to have a significant voltage response, large density of
states within a small range of admittance eigenvalue j is
required. Compared to topological boundary zero modes
[56], this is naturally achieved in the presence of PMF by
the flat NH LLs, which can be set in resonance by
controlling d0. An example of this enhancement is given
in Figs. 4(a)–4(d). Second, a unique sublattice polarization
of the lowest LL (LL0) and the general wave function
form ψn ¼ ðαϕn; βϕn−1ÞT hold for the exceptional LLs.
Controlling d0, s0, s, sublattice-resolved responses provide
access to this. The armchair-like case has every NH LL
doubly degenerate in a PMF while the zigzag-like case
mixes the NH LL0 s with the edge states. Below we use
both to highlight different features.
Edge state from NH energy-reflection symmetry.—

Consider the EP circuit in resonance at d0¼ELL0� ¼�Δ,
i.e., the positive or negative LL0� in Fig. 3(b). One thus has
dichotomous choices in d0, s0, s and x0 ¼ 0, Lx=2.
Figures 4(a), 4(c) and 4(b), 4(d) illustrate the only two
enhanced cases respectively of bulk and edge nature as
seen from the pronounced signal distribution contrast. All
others are largely suppressed or vanishing. The edge state

LL0− localized around x0 ¼ 0, Lx, surprisingly, cannot be
captured in a low-energy NH two-flavour 2D massive Dirac
theory under PMF, which solely leads to two degenerate
LL0þ states. Analyzed in the Supplemental Material [73], it
is actually the consequence of a strong lattice NH energy-
reflection symmetry for any Hermitian or NH bipartite
hoppings which is beyond the usually pertinent chiral or
particle-hole symmetry. These confirm the NH sublattice
polarization from an intricate interplay between the PMF,
Dirac mass, armchair-like bands, and the NH symmetry
that dictates pairs of opposite and however complex or
real bands.
NH nodeless wave function.—Observation of the non-

Hermiticity is most prominent via inspecting the wave
functions because of the spectral property discussed. The
two-component general wave function form here becomes
relevant. One can combine the nodal structure of conven-
tional Hermite functions, i.e., HnðyÞ possesses n nodes,
with our physical interpretation of translating the motion to
the complex plane of HnðzÞ. This directly leads to the
removal of all nodes by the finite ℑz ¼ ϵ. Therefore, a
transition from nodeful to nodeless probability (voltage)
distribution becomes a distinguishing NH feature. This is
made practically feasible by the quantum superposition
principle; i.e., one can inject spatially sinusoidally

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. Impedance and voltage tomography for the NH
circuit used in Fig. 3. Amplitudes are plotted on logarithmic
scale for armchair-like (a), (b), (c), (d) and zigzag-like (e), (f),
(g), (h) cases. Panels (a), (b), (c), (d) show two cases with strongly
enhanced response for LL0� in resonance. Impedance scan
(a) ZAA

ðx;0Þ;ðx;yÞðELL0þÞ, (b) ZBB
ðx;0Þ;ðx;yÞðELL0−

Þ and voltage scan

(c) VAA
ðLx=2;Ly=2Þ;ðx;yÞðELL0þÞ, (d) VBB

ð0;Ly=2Þ;ðx;yÞðELL0−
Þ. Panels (e),

(f), (g), (h) show voltage scan displaying NH nodeful-nodeless
transition of the up (ϕ2) and down (ϕ1) wave function component
of the LL2þ in resonance. (e) Hermitian, (g) NH VAA

ðx;yÞðELL2þÞ and
(f) Hermitian, (h) NH VBB

ðx;yÞðELL2þÞ.
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oscillating current at a certain wave number k0x along one
single open boundary, say, the y ¼ 0 edge of the EP circuit,
which suffices to extract the NH Hermite wave function
associated with k0x. Figures 4(e), 4(g) and 4(f), 4(h)
exemplify this nodeful-nodeless transition of ϕ2 and ϕ1,
respectively, by plotting the amplitude of voltage response.
Outlook.—Using specially designed ac electric circuits

we develop a theory and present detection schemes for a
unique NH low-energy real spectrum without skin effect,
which arise from the relativistic exceptional degeneracies
under magnetic field and exhibit NH symmetry protected
edge state and quasiparticle moving in the complex
domain. These results enrich a novel platform for synthetic
quantum systems and lay the groundwork for future
investigations of the interplay between non-Hermiticity
and the magnetic field, which is relevant to the emerging
real quantum systems with exceptional degeneracies
[48–52]. Various intriguing questions are to be explored
ahead, including imaginary-valued vector potential or
magnetic field, further generalization of quasiparticle living
in the complex plane, NH quantum valley Hall effect in the
EP circuit with PMF, and a possible NH Hofstadter
butterfly readily realized by introducing resistors to the
circuit of nodes with internal eigenmodes in a similar
manner to the present study [54,58,73].

X.-X. Z appreciates discussions with R. Haenel,
W. Yang, É. Lantagne-Hurtubise, and T. Liu. Research
described in this Letter was supported by NSERC and
by CIfAR.
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