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Distinctive features of supersolids show up in their rotational properties. We calculate the moment of
inertia of a harmonically trapped dipolar Bose-Einstein condensed gas as a function of the tunable
scattering length parameter, providing the transition from the (fully) superfluid to the supersolid phase and
eventually to an incoherent crystal of self-bound droplets. The transition from the superfluid to the
supersolid phase is characterized by a jump in the moment of inertia, revealing its first order nature. In the
case of elongated trapping in the plane of rotation, we show that the moment of inertia determines the value
of the frequency of the scissors mode, which is significantly affected by the reduction of superfluidity in the
supersolid phase. The case of an in-plane isotropic trapping is instead well suited to study the formation of
quantized vortices, which are shown to be characterized, in the supersolid phase, by a sizeable deformed
core, caused by the presence of the surrounding density peaks.
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The study of the rotational behavior of a many-body
system provides a crucial test to identify the effects of
superfluidity. This test became particularly important when
experimentalists tried to investigate the possible signature
of superfluidity in a crystal of solid 4He [1], looking for
deviations of the moment of inertia from the classical rigid
body value by means of a torsional oscillator. These exper-
iments were later shown to be inconclusive in providing
evidence for the long sought effect of supersolidity [2,3].
Ultracold atoms have eventually proved to be more efficient
platforms. In 2017, two experiments reported on the first
creation of supersolidity employing Bose-Einstein conden-
sates inside optical resonators [4,5] and spin-orbit coupled
mixtures [6]. The teams of Florence [7], Stuttgart [8], and
Innsbruck [9] later observed supersolid properties in a
harmonically trapped dipolar Bose-Einstein condensate,
revealing at the same time the effects of the crystal modula-
tion of the density profiles and the ones of coherence. More
recent works of the same teams [10–12] measured the
Goldstone modes associated with the spontaneous breaking
of the relevant symmetries characterizing the supersolid
phase. On the theoretical side, much work has been devoted
in the past to the description of the supersolid phase of
many-body systems and their superfluid behavior [13–17],
emphasizing the peculiar features exploited by systems
interacting with soft-core finite-range potentials [18–21],
the role of spin-orbit coupling [22] and of long-range
dipolar interactions [23–26].
The purpose of the present Letter is to provide first

theoretical predictions concerning the rotational properties
of a harmonically trapped supersolid dipolar gas, yielding
unique information on the superfluid behavior of such a
system, through the deviation of its moment of inertia from

the rigid value and the emergence of quantized vortices.
Special emphasis will be given to the role played by the
trapping potential which favors the direct observability of
these relevant superfluid effects. The moment of inertia
characterizes the global superfluid behavior of the nonuni-
form system and can be easily calculated also in the
presence of harmonic trapping and inhomogeneous con-
figurations. In the presence of elongated trapping in the
plane of rotation, the moment of inertia dictates the value of
the experimentally measurable frequency of the scissors
mode, corresponding to an oscillating rotation of the gas.
Isotropic trapping is instead well suited to host quantized
vortices. These are predicted to exhibit a peculiar deformed
core of large size, due to the strong reduction of the density
in the interstitial region surrounding the high density peaks,
which characterize the supersolid phase. Interestingly, in
the incoherent droplets state, we always find a finite
nonclassical rotational inertia, due to the single droplet
superfluidity.
Moment of inertia and the scissors mode.—The scissors

mode [27,28] was first observed in nuclear physics [29],
where it consists of the relative oscillating rotation between
neutrons and protons in deformed atomic nuclei. In atomic
physics, it was predicted [30] and soon measured [31] in
atomic Bose-Einstein condensates confined by an aniso-
tropic external potential, confirming the typical irrotational
behavior predicted by superfluidity. It was later studied and
observed also in ultracold Fermi gases [32,33] and in
two-dimensional (2D) Bose gases [34] as well as, more
recently, in droplets of dipolar gases [35]. An easy estimate
of the frequency of the scissors mode is provided by the
sum rule approach [36] based on the ratio ðℏωscÞ2 ¼
m1ðLzÞ=m−1ðLzÞ between the energy weighted and the
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inverse energy weighted moments mpðLzÞ¼R
dωωpSðLz;ωÞ of the dynamic structure factor SðLz;ωÞ¼P
n jhnjL̂zj0ij2δðℏω−ℏωnÞ relative to the angular momen-

tum operator L̂z. Assuming the gas is confined in a
harmonic potential VhoðrÞ ¼ m=2ðω2

xx2 þ ω2
yy2 þ ω2

zz2Þ,
the energy weighted moment takes the form (f-sum rule)
2m1ðLzÞ ¼ h½L̂z; ½Ĥ; L̂z��i ¼Nℏ2mðω2

y −ω2
xÞhx2 − y2i, with

N and m the atom number and the atom mass, respectively.
It holds in general for central potentials commuting with
the angular momentum operator, and hence applies also to
the case of the anisotropic dipolar interaction, provided
one chooses the component of the angular momentum
along the direction (z) of the dipole moments. In this case,
the commutator ½PijVddðri−rjÞ;L̂z� vanishes identically,
Vddðri−rjÞ¼ðμ0μ2=4πÞ½ð1−3cos2θÞ=ðjri−rjj3Þ� being the
dipole-dipole interaction between two identical magnetic
dipoles aligned along the z axis, θ the angle between the
vector ri − rj and the polarization direction z, while μ is the
atomic dipole moment and μ0 the vacuum permeability.
The inverse energy weighted moment is instead related to
the moment of inertia per particle Θ through the relation
2m−1ðLzÞ¼NΘ. It can be calculated by applying the static
perturbation −ΩL̂z to the system and using the standard
definition NΘ ¼ limΩ→0hL̂zi=Ω. Thus, the frequency of
the scissors mode takes the useful expression

ðℏωscÞ2 ¼
ℏ2mðω2

y − ω2
xÞhx2 − y2i

Θ
: ð1Þ

At zero temperature, the dipolar gas is characterized by a
macroscopic wave function Ψðr; tÞ that obeys the extended
Gross-Pitaevskii equation (eGPE) [37]

i
∂
∂tΨðr; tÞ ¼

�
−
ℏ2

2m
∇2 þ VhoðrÞ þ gjΨðr; tÞj2

þ
Z

dr0Vddðr − r0ÞjΨðr0; tÞj2

þ γðεddÞjΨðr; tÞj3
�
Ψðr; tÞ; ð2Þ

where the coupling constant g ¼ 4πℏ2a=m is fixed by the
s-wave scattering length a and εdd ¼ μ0μ

2=ð3gÞ ¼ add=a
(add is the so-called dipolar length) is the ratio between the
strength of the dipole-dipole and the contact interaction. The
last term is the local density approximation of the beyond-
mean-field Lee-Huang-Yang (LHY) correction [38,39], with
γðεddÞ¼ð16=3 ffiffiffi

π
p Þga3

2

R
π
0 dθsinθ½1þεddð3cos2θ−1Þ�52. The

LHY term is crucial in order to describe the supersolid phase
and the occurrence of self-bound droplets. The use of the
LHY term in Eq. (2) has been shown to work pretty well
when compared with more microscopic (Monte Carlo)
calculations [40] and to properly capture the physics of
the system when compared with experiments. The same has

been shown to be the case for self-bound droplets of quantum
mixtures [41–45].
First of all, we determine the ground state configurations

by evolving the eGPE in imaginary time starting from a
guess wave function. For the sake of concreteness, we
consider N ¼ 4 × 104 164Dy atoms confined in a harmonic
potential with trapping frequencies equal to ωx;y;z ¼
2π × ð20; 40; 80Þ Hz. Such isotope has a dipolar length
add ¼ 131a0 (a0 the Bohr radius), and it has been recently
shown to have a much longer lifetime with respect to the
other magnetic atoms (162Dy and 166Er) [9].
The eGPE admits solutions of different nature depending

on εdd, which can be experimentally tuned by modifying
the s-wave scattering length through Feshbach resonances.
We find that for εdd < 1.42 the solution corresponds to a
fully superfluid Bose-Einstein condensate [Fig. 1(a)], with
the shape of the density profile given by an inverted
parabola [46]. As εdd increases the role of the dipolar,
interaction becomes more and more important and is at the
origin of a rotonic structure in the excitation spectrum
[47,48], observed experimentally in [49]. The softening of
the roton gap eventually causes the transition to a density
modulated structure: in the interval 1.42 < εdd < 1.52, the
density profile of the equilibrium configuration is charac-
terized by typical overlapping density peaks, corresponding
to the supersolid phase [see Fig. 1(b)]. For larger values of
εdd, the density peaks do not overlap anymore and form an
incoherent crystal of self-bound droplets [see Fig. 1(c)].
Once the phase diagram is known, we determine the

moment of inertia by adding the term −ΩL̂zΨ to Eq. (2)
and evaluating the angular momentum. Since the velocity
field obtained within the eGPE has the irrotational
form vðrÞ ¼ ðℏ=mÞ∇SðrÞ, fixed by the gradient of the
phase SðrÞ of the macroscopic wave function ΨðrÞ ¼ffiffiffiffiffiffiffiffiffi
nðrÞp

exp½iSðrÞ�, this theory cannot describe a rigid
rotational flow of the form v ¼ Ω ∧ r. Nevertheless, if
the density profile is not rotationally invariant, the moment
of inertia can become large and even approach the rigid
value, Θrig ¼

R
drðx2 þ y2ÞnðrÞ, as a consequence of the

mechanical drag caused by the rotation. This is the case

FIG. 1. Typical in situ density profiles obtained from the
stationary solution of the eGPE (2), for different values of εdd
(lengths are given in terms of the harmonic oscillator length
az ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p ¼ 0.87 μm). Three different regimes are clearly
distinguishable: (a) superfluid phase (for εdd ¼ 1.32), (b) super-
solid phase (for εdd ¼ 1.43), and (c) an incoherent crystal of two
self-bound droplets (for εdd ¼ 1.55). Notice that the color scale is
saturated in (b) and (c), where the maximum value of the density
reaches na3z ¼ 900 and 1800, respectively.
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even in the fully superfluid phase if the trapping potential is
highly elongated. It is, in fact, immediate to see that the
variational result [36,50]

Θvar ¼
�hx2 − y2i
hx2 þ y2i

�
2

Θrig ð3Þ

for the moment of inertia, derivable making the ansatz S ¼
αxy for the phase of the macroscopic wave function and
satisfying the inequality Θvar ≤ Θ, approaches the rigid
value for highly deformed configurations corresponding to
jhx2 − y2ij ≃ hx2 þ y2i. In this extreme limit, it is not
possible to reveal the effects of superfluidity through the
measurement of the scissors frequency Eq. (1), and it is
therefore convenient to work with moderately deformed
traps. For this reason, we have chosen the value ωy=ωx ¼ 2

for the in-plane aspect ratio. It is worth noticing that in the
fully superfluid phase the variational result Eq. (3) coin-
cides with the prediction of the hydrodynamic equations of
superfluids [36,50]. It can be also derived miroscopically in
the case of the ideal Bose gas [51].
The results of our calculations for the moment of inertia

are reported in Fig. 2(a) in units of the rigid value. In the
supersolid phase, the ratio Θ=Θrig significantly increases as
a consequence of the presence of the density peaks which
provides a solidlike contribution to Θ. The transition
between the superfluid and the supersolid phase is char-
acterized by a visible jump that reflects its first order nature
[15,19,21,23,52]. By further increasing the value of εdd, the

moment of inertia eventually approaches the rigid value,
reflecting the crystalline nature of the self-bound droplet
phase. However, even in the crystal phase, the rigid body
value is not exactly achieved since each droplet is itself
superfluid and cannot host a rigid rotational motion.
Because of the small size of each droplet (compared to
the inter droplet distance) as well as of the anisotropy of
the trap, the difference between the rigid body value and the
one of the crystal phase is nevertheless almost negligible. In
the elongated case, reported in Fig. 2, it amounts to a few
percent for the largest values of εdd. In Fig. 2, we also
report (see red dotted line) the prediction of the approxi-
mate variational estimate (3), which perfectly matches the
numerical result in the fully superfluid regime (εdd < 1.43),
while for larger values of εdd, it underestimates the actual
value of the moment of inertia.
The moment of inertia can be used to estimate the

frequency of the scissors mode, employing Eq. (1). The
predicted value ranges from the usual Bose-Einstein con-

densate value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
y þ ω2

x

q
¼ 2.23ωx [30] for εdd → 0, to the

value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
y − ω2

x

q
¼ 1.73ωx in the opposite limit of large

εdd, when hy2i ≪ hx2i and the moment of inertia takes the
rigid value. The results for the frequency obtained within
the sum rule approach are reported as black triangles in
Fig. 2(b) as a function of εdd. In order to certify the validity
of the sum rule prediction, we have carried out real-time
simulations of the eGPE by generating initially a sudden
rotation of the confining trap. The relevant signal associ-
ated with the rotation of the cloud is provided by the
quantity hxyi. The simulation reveals the occurrence of a
single well-defined frequency for all values of εdd, which is
in perfect agreement with the sum rule approach, as shown
by the red dots in Fig. 2(b). Measuring the jump in the
frequency of the scissors mode at the superfluid-supersolid
transition would provide an important proof of its first order
nature.
Nonclassical moment of inertia and quantized vortices in

an isotropic trap.—If the confining potential is isotropic in
the rotational plane (ωx ¼ ωy), we find that, for N ¼ 105

164Dy atoms and trapping frequencies equal to ωx;y;z ¼
2π × ð40; 40; 80Þ Hz, the formation of the supersolid phase
emerges at the value εdd ¼ 1.32, with a density profile
characterized by overlapping droplets arranged in triangu-
lar cells (see also [25,26]). The number and the distribution
of the peaks depend on the atom number, the trapping
frequencies, and the scattering length. Nevertheless, the
distance between droplets is essentially the same for all
the configurations considered in the present work, and
agrees rather well with the value of 2π=qR ¼ 4.5az pre-
dicted in 2D uniform matter [47], where the roton wave
vector qR is determined by the axial confinement length
az ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωzÞ

p ¼ 0.87 μm.
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FIG. 2. (a) Moment of inertia Θ of a dipolar gas in an axially
deformed harmonic trap (ωy=ωx ¼ 2), as function of εdd. The
black solid line shows the results of the eGPE calculations carried
out with an angular momentum constraint, and the red dotted line
shows the estimate given by Eq. (3). (b) Frequency of the scissor
mode as function of εdd. The black dotted line corresponds to the
sum rule estimate (1). Red circles correspond to the frequency of
the time-dependent signal hxyi obtained from GP real-time
simulations.
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In isotropic configurations, the moment of inertia fixes
the nonclassical rotational inertia (NCRI) fraction fNCRI
according to the relation [53]

fNCRI ¼ 1 − Θ=Θrig: ð4Þ

In the case of a ring geometry, this quantity coincides with
the superfluid fraction defined in [55,56]. In Fig. 3, we
report our predictions for fNCRI as a function of the
dimensionless parameter εdd. This quantity exhibits a jump
at the transition to the supersolid phase, which is much
smaller than in the case of elongated trapping, followed by
a further jump around εdd ¼ 1.335, corresponding to a
change of the supersolid structure from the single-triangu-
lar cell [Fig. 3(c)] to the two triangular-cell [Fig. 3(d)]
configuration. For larger values of εdd, the NCRI fraction
continues decreasing, the global behavior being similar to
the one of the superfluid fractions calculated in periodic
configurations as a function of εdd, both in the 1D [23] and

in the 2D [25] cases. In order to get a better insight on the
rotational effects taking place in the supersolid phase, we
show in Fig. 4 the velocity field vðrÞ ¼ ðℏ=mÞ∇SðrÞ of the
rotating supersolid (εdd ¼ 1.347). Despite the irrotational
nature of the eGPE, the figure clearly reveals the rotational
motion of the droplets through the superfluid, which reacts
to the motion of the droplets.
The isotropic rotating configuration is very well suited to

explore another important effect of superfluidity, i.e., the
emergence of quantized vortices. Indeed, we find that at
higher values of the angular velocity Ω, the supersolid is
able to sustain a quantized vortex, thanks to the existence of
an important superfluid component. In Fig. 5, we show the
2D density profiles of a rotating supersolid configuration at
frequency Ω ¼ 0.1ωx both in the single-triangular cell and
the two-triangular cell structure cases. The presence of the
vortex is clearly revealed by the vanishing of the density in
the region of the vortex core (and—not shown—by the
typical divergent behavior of the velocity field in the
proximity of the center of the core), an effect directly
measurable in future experiments. Remarkably, due to the
small value of the density in the superfluid region and the
vicinity of the surrounding droplets, the core of the vortex is
large and deformed. The core deformation strongly
depends on the structure of the droplets, being triangu-
lar-shaped and oblate in Figs. 5(b) and 5(d), respectively.
We find that the vortical solution becomes the ground state
configuration for Ω > Ωc ∼ 0.12ωx, i.e., for values of Ω
significantly smaller than in the case of usual condensates
[36]. The effect is the consequence of the small value of
the density in the region where the vortex is formed.
Furthermore, we find that the jump in the angular momen-
tum per particle, caused by the appearance of the vortex, is

FIG. 3. (a) Nonclassical rotational inertia fraction (4) of a
dipolar gas in an isotropic harmonic potential ωy ¼ ωx as a
function of εdd. The brown dashed lines indicate the position of
two jumps. (b) Zoom in the region 1.315 < εdd < 1.34, where the
moment of inertia presents the two jumps. (c), (d) Plot of the
density in the region where the system presents a single-triangular
cell and a two-triangular cell configuration, respectively.

FIG. 4. Velocity field of a supersolid at small Ω. The droplets
partially follow the rigid body rotation, being dragged by the
−ΩL̂z term of the Hamiltonian.

FIG. 5. Density plots of the ground state and vortical configu-
ration: (a), (c) in the single-triangular cell structure for
εdd ¼ 1.334; (b),(d) in the case of a two-triangular cell structure
obtained for εdd ¼ 1.351.

PHYSICAL REVIEW LETTERS 124, 045702 (2020)

045702-4



smaller than ℏ, reflecting the fact that the superfluid
fraction is smaller than 1 in the supersolid phase. A more
systematic discussion of the behavior of vortices in the
supersolid phase will be the object of a future work.
In conclusion, we have shown that supersolid dipolar

atomic gases confined in harmonic traps reveal important
superfluid features. In the case of elongated configurations
in the plane of rotation, we have shown that the frequency
of the scissors mode is a direct indicator of the effects of
superfluidity on the moment of inertia, while in the case of
isotropic trapping, we have shown that, remarkably, the
supersolid can host a quantized vortex whose core exhibits
a characteristic deformed shape, caused by the presence of
the surrounding droplets. Our theoretical predictions sug-
gest that future measurements of the rotational effects will
provide new light on the superfluid behavior of these novel
systems.
While completing this work, we became aware of a very

recent experimental work [54] reporting the measurement
of the scissors mode frequency in a dipolar supersolid and
showing a very good agreement with our prediction.
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