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The study of nucleation in fluid mixtures exposes challenges beyond those of pure systems. A striking
example is homogeneous condensation in highly surface-active water-alcohol mixtures, where classical
nucleation theory yields an unphysical, negative number of water molecules in the critical embryo. This
flaw has rendered multicomponent nucleation theory useless for many industrial and scientific applications.
Here, we show that this inconsistency is removed by properly incorporating the curvature dependence of
the surface tension of the mixture into classical nucleation theory for multicomponent systems. The Gibbs
adsorption equation is used to explain the origin of the inconsistency by linking the molecules adsorbed at
the interface to the curvature corrections of the surface tension. The Tolman length and rigidity constant are
determined for several water-alcohol mixtures and used to show that the corrected theory is free of physical
inconsistencies and provides accurate predictions of the nucleation rates. In particular, for the ethanol-water
and propanol-water mixtures, the average error in the predicted nucleation rates is reduced from 11–15
orders of magnitude to below 1.5. The curvature-corrected nucleation theory opens the door to reliable
predictions of nucleation rates in multicomponent systems, which are crucial for applications ranging from
atmospheric science to research on volcanos.
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Most first order phase transitions, such as condensation,
cavitation, boiling, and crystallization take place through a
common mechanism known as nucleation. Here, the rate-
limiting step is the formation of an incipient portion of the
new phase exceeding the critical size required to continue
growing spontaneously. This qualitative picture of the
process is the basis of classical nucleation theory (CNT),
which is the most popular model for predicting the rates of
formation and properties of nucleating embryos [1–3]. For
pure fluids, CNT is qualitatively correct [4–6]. However,
the predicted rates show systematic deviations from experi-
ments, with errors reaching 20 orders of magnitude for
argon [7]. The discrepancies are hypothesized to stem from
the crude approximations involved in CNT, especially the
so-called capillary approximation, which considers the
nucleus to be a spherical portion of a bulk phase with
the same surface tension as the planar interface. Since the
critical embryo is nanosized, much effort has been devoted
to estimate curvature corrections for the surface tension and
evaluate their impact on nucleation in pure fluids [8–15].
Most systems of interest are mixtures. Similar to pure

fluids, CNT predictions for multicomponent nucleation
rates can be off by many orders of magnitude. But more
severely, even the qualitative picture of nucleation is in
some cases wrong, as CNT can predict a negative number
of particles in the critical embryo [16,17]. Multicomponent

CNT has therefore been rendered useless for many systems,
such as binary mixtures of water and strongly interacting
molecules like alkanols [16–19], or acetic acid [20].
Previous studies with density functional theory [21] and
thermodynamics [22,23] have suggested that the capillarity
approximation might be the cause for this inconsistency,
but a simple yet general remedy has been missing.
Using condensation of highly surface-active alcohol-

water mixtures as an example, we will show that incorpo-
rating curvature corrections for the surface tension in
homogeneous nucleation theory removes the inconsisten-
cies of multicomponent CNT. An explanation founded in
thermodynamics will be provided on the basis of the Gibbs
adsorption equation. In addition to being physically con-
sistent, the corrected theory yields quantitatively accurate
predictions of nucleation rates, facilitating reliable predic-
tions for applications ranging from atmospheric science
[24] to research on volcanoes [25].
Condensation is an activated process that takes place

through the formation of a critically sized droplet in a
supersaturated gas. In the context of CNT, the nucleation
rate is given by

J ¼ J0 exp

�
−

W
kBT

�
; ð1Þ
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whereW is thework of formation of the critical embryo, kB is
Boltzmann’s constant, and T is temperature. The kinetic
prefactorJ0 has in thisworkbeen calculated from the accurate
expression by Vehkamäki and Ford [26], using a Zeldovich
factor based on the virtual-monomer approach [2,27].
The work of formation for the critical droplet is [1,2]

W ¼ 4π

3
σR2

t ; ð2Þ

where Rt is the droplet’s radius of tension and σ is the
corresponding surface tension. We have chosen the radius of
tension as the dividing surface because it makes the final
expressions particularly simple. To apply the theory in the
general multicomponent case, one must specify how to
calculate σ and Rt for a supersaturated gas with given
pressure Pg and mole fractions y. The critical droplet has
an interior pressurePl, interior mole fractions x, and surface
tension σðRt; xÞ. The curvature dependence of the surface
tension is assumed to follow the Helfrich expansion [28,29]:

σðRt; xÞ ¼ σ0ðxÞ
�
1 −

2δðxÞ
Rt

�
þ ksðxÞ

R2
t

; ð3Þ

where σ0ðxÞ is the planar surface tension. The Tolman length
δðxÞ and spherical rigidity ksðxÞ, referred to as the Helfrich
coefficients, encode how the surface tension of droplets with
interior composition x vary with curvature, (1=Rt).
Similar to CNT, we assume ideal gas and incompressible

liquid. This gives the following expressions for the chemi-
cal potentials of the gas (superscript g) and the liquid
(superscript l)

μgi ðy; PgÞ ¼ kBT ln

�
Pgyi

Psat;pure
i

�
; ð4Þ

μli ðx; PlÞ ¼ kBT ln asati ðxÞ þ v̄iðxÞ½Pl − PsatðxÞ�: ð5Þ

Here Psat;pure
i is the saturation pressure of pure component i,

Psat is the saturation pressure of the mixture, asati is its
saturation activity, and v̄i is its partial molecular volume;
these are often tabulated [16]. The thermodynamic state at
the interior of the critical droplet, given by ðPl; xÞ, is
determined from equality of chemical potentials in the
metastable gas and the interior of the droplet, i.e., Eqs. (4)
and (5).
Having obtained ðPl; xÞ one next solves for Rt, which is

given by the Laplace equation [1,2]

Pl − Pg ¼ 2σðRt; xÞ
Rt

: ð6Þ

For CNT, Eq. (6) can be solved exactly:

RCNT ¼ 2σ0
Pl − Pg : ð7Þ

If σðRt; xÞ follows the Helfrich expansion, however, the
Laplace equation is a third-order polynomial in Rt. We
solve this using a second-order perturbation expansion

Rt ≈ RCNT

�
1þ a

RCNT
þ b
R2
CNT

�
; ð8Þ

where by inserting Eq. (8) into Eq. (6), we identify

a ¼ −2δ; b ¼ ks
σ0

− 4δ2: ð9Þ

With this approximation for Rt, Eq. (2) yields the work of
formation beyond the capillarity approximation. The final
equations are

Rt ≈ RCNT

�
1 −

2δ

RCNT
þ ks=σ0 − 4δ2

R2
CNT

�
; ð10Þ

W ≈
4πσ0R2

CNT

3

�
1 −

6δ

RCNT

�
þ 4πks: ð11Þ

Equations (10)–(11) are the defining equations for the
curvature-corrected CNT (c-CNT); they reduce to the
standard expressions of CNT when δ ¼ ks ¼ 0.
The next step in order to apply c-CNT is to determine the

Helfrich coefficients. In Ref. [30], it was shown that square
gradient theory (SGT) gave very similar Helfrich coeffi-
cients as full, nonlocal density functional theory based on
the perturbed-chain polar statistical associating fluid theory,
even for surface-active mixtures. Since the full density
functional theory may give inaccurate predictions for
alcohols [30], we have combined SGT with the cubic plus
association (CPA) equation of state (EOS) to compute δ and
ks for several water-alcohol mixtures [31–33]. The meth-
odology is detailed in Refs. [29,30], and in the Supplemental
Material [34], which includes Refs. [35–42].
The Helfrich coefficients of the water-alcohol mixtures

studied in this work exhibit a qualitatively similar behavior.
They are displayed for the water-ethanol mixture in Fig. 1.
The Tolman length and spherical rigidity both display a
strong, nonlinear dependence on the ethanol mole fraction.
Whereas δ and ks are both negative for pure ethanol and
water and thus partially cancel each other in Eq. (3), for the
mixture they can have opposite signs and larger magni-
tudes. The Tolman length of pure water is ∼ − 0.5 Å, but
becomes positive with only 0.35% ethanol mole fraction in
the liquid phase; in the same range, the absolute value of the
spherical rigidity nearly doubles. A minute concentration of
the surface-active component can thus change the surface
tension of a small cluster dramatically due to the strong
surface adsorption. This observation is of high importance
to atmospheric science, since surface-active components
like sulfuric acid and ammonia can be present in low
concentrations during formation of rain drops [24].
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In multicomponent condensation, the degree of metasta-
bility is conveniently given in terms of gas activities, which
for component i is defined as ai ¼ Pgyi=P

sat;pure
i . For the

water-alcohol mixtures at a given temperature, the nuclea-
tion rate Jðaa; awÞ is a function of the gas activities of the two
components, where subscripts a and w denote alcohol and
water, respectively. In binary nucleation experiments, it is
customary to measure onset activities, defined as the values
of the activities of the two components that yield a constant
value of the nucleation rate Jðaa; awÞ ¼ Jspec, which for the
experiments in Ref. [16] was set to Jspec ¼ 1013 m−3 s−1.
Figure 2 (top) displays the experimentally measured onset
activities (circles), the infamous “hump” predicted by binary
CNT [17] (dashed line), and the complete removal of this
problem by c-CNT (solid line).
The hump represents an unphysical prediction of CNT.

This can be explained by a closer inspection of the number
of alcohol and water molecules in the critical droplet in
excess over that of the metastable gas, ΔNa and ΔNw.
Combining the first nucleation theorem [1,2,26],

ΔNi ¼ kBT

�∂ ln J
∂μi

�
T;μj

; ð12Þ

with Eq. (4) and the definition of ai, one obtains [1,2]

�∂aa
∂aw

�
J;T

¼ −
aa
aw

ΔNw

ΔNa
: ð13Þ

Since aa, aw > 0, Eq. (13) implies that a positive slope in
the onset-activity plot corresponds to a negative molecular
content for one of the species. The second and third plots in
Fig. 2 show the excess ethanol and water content of the
droplets computed from Eq. (12), as well as the values

inferred from the experiments of Ref. [16] using the first
nucleation theorem [2,43]. The plots should be interpreted
with caution, as there are large uncertainties associated with
the estimation of molecular content from binary nucleation
experiments. In fact, the method used in Ref. [16] assumes
that ln J is a linear function of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2a þ a2w

p
, which is a crude

approximation even for pure components.
In any case, the most important point is that whereas

CNT predicts a negative number of water molecules in the
critical drop, c-CNT removes this inconsistency. More
remarkably, for water-propanol (Fig. 3) and water-meth-
anol (Supplemental Material [34]), c-CNT also completely
removes the unphysical hump, although the phase behav-
iors of these mixtures at 260 K differ significantly from that
of water-ethanol. In addition, for the onset activities of
water-ethanol [Fig. 2 (top)] we verified that we obtain the

FIG. 1. Helfrich coefficients for the water-ethanol mixture at
260 K along the path of constant liquid composition. The
experimental value of the surface tension is taken from Ref. [16]. FIG. 2. Properties of critical droplets in the water-ethanol

mixture at 260 K, corresponding to a nucleation rate Jspec ¼
1013 m−3 s−1 for CNT and c-CNT, with experimental data from
Ref. [16]. Top: onset activities. Middle: excess ethanol content.
Bottom: excess water content.

FIG. 3. Onset activities for water-propanol at 260 K, corre-
sponding to a nucleation rate Jspec ¼ 1013 m−3 s−1 for CNT and
c-CNT, with experimental data from Ref. [44].
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same excellent agreement between experiments and c-CNT
for nucleation rates that are 100 times higher or lower.
We shall next explain why the Helfrich expansion is

successful in removing the inconsistencies of CNT. For a
given metastable gas state, CNT and c-CNT predict the
same interior mole fraction and interior pressure of the
critical cluster. Figure 4 (top) shows how the surface
tension varies with curvature for CNT and c-CNT when
the ethanol liquid mole fraction equals xa ¼ 0.1. We have
marked the point on each curve corresponding to the gas
state for which CNT predicts JCNT ¼ 1013 m−3 s−1, which
corresponds to a water activity of 2.1 in Fig. 2. By applying
the Helfrich expansion, the surface tension is reduced from
its planar value of 43 (CNT) to 26 mN=m in c-CNT, i.e., by
40%. A reduced surface tension means that lower gas
activities are needed to yield a given nucleation rate. This
explains why the Helfrich expansion lowers the onset
activities with respect to the hump predicted by CNT in
Fig. 2 (top).
There is also a more direct way to see why curvature

corrections fix the problem of negative water content. The
excess number of water particles in the critical cluster can
be split into contributions from the interior of the cluster
(ΔNint

w ) and the surface (Nsur
w ) as

ΔNw ¼ ΔNint
w þ Nsur

w ; ð14Þ

where ΔNint
w ¼ ðxwρl − ywρgÞ4πR3

t =3 and ρ is the number
density. The water adsorption is defined as Γw ¼
Nsur

w =ð4πR2
t Þ. For all the cases considered in this work

ΔNint
w is positive, and the negative number of particles in

the critical cluster originate in Γw. We computed the
adsorption using Eq. (12) combined with Eqs. (5) and
(14), and the result is plotted in Fig. 4 (bottom). The effect
of the Helfrich expansion on adsorptions is dramatic:
whereas c-CNT predicts that only 3 water molecules are
“missing” from the interface, CNT predicts 93; this
discrepancy is primarily due to the adsorption Γw from
CNT being a factor 15 larger in magnitude than for c-CNT.
The surface tension and the adsorptions are linked by the

Gibbs adsorption equation [29,45]

dσ ¼ −Γ · dμ; ð15Þ

where Γ is the vector of adsorptions. By differentiating
Eq. (15) with respect to Rt, approximating ΔP ≈ Pl, using
Eq. (5), and rearranging we find

v̄aΓa þ v̄wΓw ¼ −
� ∂σ
∂Rt

�
T;xw

��∂Pl

∂Rt

�
T;xw|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΔΓ

: ð16Þ

Since v̄a=v̄w ≈ 4, the adsorptions of water and ethanol in
CNT are always with opposite sign, with the water
adsorption being nearly 4 times larger in magnitude.
Using the derivatives of Eqs. (3) and (6) in Eq. (16) gives

ΔΓ ¼ 0 for CNT; ð17Þ

ΔΓ ≈ δþ ð4δ2 − ks=σ0Þ=Rt for c-CNT: ð18Þ

Equation (17) is a well-known result [2,22]. Equation (18),
however, is new and accounts for most of the difference
between the two curves in Fig. 4 (bottom). It constitutes a
salient demonstration of why the curvature dependence of
the surface tension is crucial to capturing the adsorptions.
This is especially important for surface-active mixtures,
where Tolman lengths and spherical rigidities can far
exceed their pure-component values (cf. Fig. 1).
Besides removing the inconsistencies of CNT, curvature

corrections also yield accurate predictions for binary nucle-
ation rates. For ethanol-water and propanol-water, the
nucleation rates predicted from c-CNT display a remarkable
agreement with experimental results, in contrast to those
from CNT (see Table I and the Supplemental Material). In
addition to bringing the average order-of-magnitude
deviation below1.5, c-CNThasworst-case deviations below
3 orders of magnitude—in sharp contrast to CNT, which can
underpredict the nucleation rates by 35 orders of magnitude
forwater-propanol. To evaluate the impact of the assumption
of ideal gas and incompressible liquid on the nucleation rate
predictions, we replaced Eqs. (4)–(5), evaluated with the
correlations of Ref. [16], with the chemical potentials from
the CPA EOS. This changed the numbers in Table I by less
than 1.5. Nonidealities are thus not essential at these
conditions. Furthermore, the conclusions drawn in this work

FIG. 4. Effect of Helfrich expansion on surface tension (top)
and adsorption (bottom) for droplets of ethanol liquid mole
fraction 0.1. The dashed line is the capillary approximation
(CNT), and the marked critical droplet corresponds to a gas state
yielding JCNT ¼ 1013 m−3 s−1, having the indicated number of
water particles in the interior (ΔNint

w ) and the surface (Nsur
w ). The

full line is the Helfrich expansion (c-CNT), and the marked
droplets correspond to the same gas state.
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are not sensitive to the EOS used in SGT, as we also tested
that another EOS (PC-SAFT [46,47], not shown) yields
similar results.
In conclusion, we have demonstrated that using a second-

order curvature expansion of the surface tension corrects the
composition dependence of the work of formation in binary
CNT, removes the unphysical predictions of negative
molecular content in the critical nucleus, and yields simple
yet accurate predictions of nucleation rates. The approach
involves no fitting to nucleation measurements; only planar
surface tensions and an accurate equation of state are needed
to calculate the Tolman length and rigidity parameters.
c-CNT may be the key to quantitative predictions of
condensation and cavitation rates for mixtures relevant to
industrial processes, atmospheric science, and climate-
change modeling.
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