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Processes occurring in the strong field regime of QED are characterized by background electromagnetic
fields of the order of the critical field Fcr ¼ m2c3=ℏjej in the rest frame of participating charges. It has been
conjectured that if in their rest frame electrons and positrons experience field strengths of the order of
Fcr=α3=2 ≈ 1600Fcr, with α ≈ 1=137 being the fine-structure constant, their effective coupling with
radiation becomes of the order of unity. Here we show that channeling radiation by ultrarelativistic
electrons with energies of the order of a few TeVon thin tungsten crystals allows us to test the predictions of
QED close to this fully nonperturbative regime by measuring the angularly resolved single photon intensity
spectrum. The proposed setup features the unique characteristics that essentially all electrons (1) undergo at
most a single photon emission and (2) experience at the moment of emission and in the angular region of
interest the maximum allowed value of the field strength, which at 2 TeVexceeds Fcr by more than 2 orders
of magnitude in their rest frame.
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A measure of the strength of the electromagnetic
interaction is theoretically represented by the dimensionless
fine-structure constant α ¼ e2=ℏc, with e < 0 being the
electron charge and in units where 4πϵ0 ¼ 1 [1–4]. At
energies of the order of the electron rest energy
mc2 ≈ 0.511 MeV, the numerical value of the fine-struc-
ture constant is about 1=137 ≈ 7 × 10−3. It is known,
however, that at increasingly high energies the effective
electromagnetic coupling becomes increasingly larger and
features a pole (Landau pole) at ΛQED ∼mc2 expð3π=2αÞ ∼
10277 GeV [1–4]. From a pragmatic point of view the
Landau pole does not limit the applicability of QED and its
exceedingly large value is closely related to the fact that
radiative corrections in QED become larger only logarith-
mically at increasingly high energies [1–4].
In view of the experimental success of QED, it is natural

to test the theory under extreme conditions, such as those
provided by intense background electromagnetic fields. In
the realm of QED, a background field is denoted as
“intense” if the probabilities of quantum processes show
a significant nonlinear dependence on the field amplitude.
In this regime the background electromagnetic field must

be taken into account exactly in the calculations, which is
achieved by quantizing the electron-positron field in the
presence of the field (Furry picture) [5]. Additionally,
quantum effects like photon recoil significantly alter the
probabilities of quantum processes if electrons and posi-
trons experience in their rest frame electromagnetic
fields of the order of the “critical” fields of QED: Ecr ¼
m2c3=ℏjej ≈ 1.3 × 1016 V=cm and Bcr ¼ m2c3=ℏjej ≈
4.4 × 1013 G [3,6–11]. At background electric fields of
the order of Ecr the vacuum becomes unstable under
electron-positron pair production and at background mag-
netic fields of the order of Bcr the magnetic energy related
to the electron magnetic moment becomes comparable with
mc2. The instability of the vacuum in an ultracritical
magnetic field due to the collapse of positronium has been
investigated in Refs. [12,13].
Ultrarelativistic electrons entering a single crystal

(almost) along a direction of high symmetry (below
denoted as z) interact coherently with the crystal atoms
aligned along the symmetry direction [14–23]. In this
regime, the electric field of all aligned atoms can be
approximately described by means of a continuous poten-
tial and the total crystal field is the sum of the electric fields
of all the “strings” of atoms periodically distributed on the
transverse (xy) plane according to the structure of the
crystal. If an electron with initial energy ε ≫ mc2 enters a
crystal with a velocity at an angle θ ≪ 1 with respect to the
z axis, the electron motion in the continuous potential
becomes transversely bound if θ ≲ θc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jUMj=ε

p
(axial
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channeling) [24], whereUM is the electron potential energy
depth in the crystal. In the case of channeling, nonlinear
effects become sizable if the motion on the xy plane is
relativistic, i.e., if ξ ¼ εθc=m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jUMjε=m2

p ≳ 1 (from
now on units with ℏ ¼ c ¼ 1 are employed) [15–18].
Quantum effects like photon recoil are instead controlled
by the quantum nonlinearity parameter χ ¼ ðε=mÞE⊥=Ecr,
where E⊥ is a measure of the crystal field on the xy plane
[15–18].
In the 1970s Ritus and Narozhny conjectured that at χ ≫

1 the effective coupling of QED in a constant crossed field
(CCF), i.e., a constant and uniform electromagnetic field
ðE0;B0Þ such that the two Lorentz-invariant quantities
E2
0 − B2

0 and E0 · B0 vanish, scales as αχ2=3 [25–28] (see
also Ref. [29] and the reviews in Refs. [7,30,31]). Since,
apart from inessential prefactors, the energy of the incom-
ing particle enters radiative corrections only through χ at
χ ≫ 1, the Ritus-Narozhny (RN) conjecture implies an
asymptotic high-energy behavior of strong field QED in a
CCF qualitatively different from that of QED in vacuum
(see also Refs. [32,33] for an analysis about the interplay
between the high-energy limit and the CCF limit in strong
field QED). It has been recently shown that this fully
nonperturbative regime of strong field QED can be entered
by employing intense laser radiation [34,35] and collision
between dense electron and/or positron bunches [36,37].
Both from an experimental and a theoretical point of view,
however, it is crucial to identify a physical observable that
can be measured and computed, such that strong field QED
can be effectively put to the test.
In the present Letter we show that channeling radiation

by electrons with a few TeV energy on thin tungsten
crystals represents a promising tool to approach this
extreme regime of QED and to test the theory by measuring
the angularly resolved single-photon intensity spectrum.
Indeed, the present setup has the unique features that
essentially all electrons undergo at most a single photon
emission and, in the angular region of interest, emit at the
maximum allowed value of the parameter χ ≳ 100, which
allows for a feasible comparison between experimental
results and theoretical predictions. Now, at the CERN
Secondary Beam Areas (SBA) beam lines, electron beams
of energies up to about 250 GeV are available and it has
already been proposed to extract the proton beam from the
Large Hadron Collider (LHC) to produce secondary
electrons with energies up to about 4 TeV [38,39], which
in tungsten can experience fields corresponding to χ ≳ 300
[38]. We point out that our aim here is not to enter the
regime where αχ2=3 ∼ 1, which corresponds to χ ∼ 1600,
because a fully nonperturbative theory of strong field QED
is not available yet. We rather aim at values of χ ≳ 100 such
that αχ2=3 is significantly larger than α but still sufficiently
smaller than unity that a perturbative treatment of the
interaction between electrons and positrons and radiation
field based on the Furry picture is applicable.

Below we consider a bunch of ultrarelativistic electrons
impinging one by one onto a tungsten crystal (approx-
imately) along the h111i direction, which is set to coincide
with the z direction of the coordinate system. First, we
present some analytical considerations on the electric field
of a single atomic string. Note that by estimating the
variation Δρ of the impact parameter between two suc-
cessive atoms in the string as Δρ ∼ dθ, where d is the
atomic spacing and θ ∼ 2Zα=ερ is the typical deflection
angle for an ultrarelativistic electron (Z ¼ 74 for tungsten),
we conclude that the continuous-potential model is appli-
cable in the ultrarelativistic regime because the condition
Δρ ≪ ρ is fulfilled at ρ ∼ R, where R ≈ λC=αZ1=3 is the
Thomas-Fermi radius, with λC ¼ 1=m ≈ 3.9 × 10−11 cm
being the Compton wavelength [15].
By indicating as ρ ¼ ðx; yÞ the coordinates in the trans-

verse plane, with the atomic string crossing this plane at
ρ ¼ 0, the continuum potential ΦðρÞ depends only on the
distance ρ ¼ jρj and it can be approximated as [16]

ΦðρÞ ¼ Φ0

�
ln

�
1þ 1

ϱ2 þ η

�
− ln

�
1þ 1

ϱ2c þ η

��
; ð1Þ

where ϱ ¼ ρ=as and ϱc ¼ ρc=as. Here, the parameters Φ0,
ρc, η, and as depend on the crystal and ρ ≤ ρc. In the case of
the h111i axis of tungsten we have that Φ0 ¼ 417 V,
ρc ¼ 1.35 Å, η ¼ 0.115, and as ¼ 0.215 Å. The physical
meaning of these parameters is clear from Eq. (1) [the
parameter UM introduced above corresponds here to
eΦð0Þ] and we only point out that the quantity πρ2c
represents the area per unit string corresponding here to
the h111i direction in tungsten [16]. The electric field
vector E⊥ðρÞ of the string lies on the xy plane and is given
by (see also Fig. 1)

E⊥ðρÞ ¼ −∇⊥ΦðρÞ ¼ 2Φ0

as

ϱ

ηþ ϱ2 þ ðηþ ϱ2Þ2 : ð2Þ

The corresponding (local) quantum nonlinearity param-
eter reads

χðρÞ ¼ ε

m
jeE⊥ðρÞj

m2
¼ 2εjU0j

m2

λC
as

ϱ

ηþ ϱ2 þ ðηþ ϱ2Þ2 ; ð3Þ

where U0 ¼ eΦ0 and where we have implicitly assumed
that the electron energy ε does not significantly change
during the interaction with the crystal (see also below). In
order to interpret the numerical results reported below, it is
useful to notice that χðρÞ has a maximum approximately
at ρ ¼ ρmax ≈

ffiffiffi
η

p ð1 − 2ηÞas ≈ 0.261as (see also Fig. 1)
and that
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χmax ¼ χðρmaxÞ ≈
εjU0j
m2

λC
as

1 − 2ηffiffiffi
η

p ≈ 65.8ε½TeV�: ð4Þ

Now, we report the results of numerical simulations in
which an electron enters a tungsten crystal of L ¼ 5 μm
thickness (almost) along the h111i direction. Although the
above analytical considerations are restricted to a single
atomic string, the presented numerical results are obtained
by determining the crystal field as the sum of the con-
tributions of the 41 strings closest to the electron on the
transverse xy plane. For the potential of each string, the
Doyle-Turner potential has been employed [40,41], which
is more accurate than that in Eq. (1) but less suitable for
analytical considerations. The results are obtained by
averaging over a bunch of 2 × 107 electrons. The electrons
are uniformly distributed on the xy plane, have an energy of
2 TeV and initially Gaussian distributed opening angles
along the x and the y direction both centered around zero
and with standard deviation of 5 μrad, which is not an
unrealistic scaling with energy of what can be achieved
nowadays [21]. Now, in the ultrarelativistic regime under
consideration the photon emission probability can be
computed within the semiclassical method [16], which
requires the knowledge of the electron classical trajectory
in the crystal field. Thus, the numerical code computes the
evolution of the electrons inside the crystal via the Lorentz
equation (for the sake of the estimate, note that the number
of bound states in the transverse motion within the single-
string model is of the order of ðas=λCÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εjU0j=m2

p
∼

103 ≫ 1 [16,20], such that their discrete nature can be
ignored). The emission of photons is implemented by
means of a Monte Carlo algorithm, with the emission
probabilities per unit time given by the corresponding
expressions within the local constant field approximation

(see, e.g., Eq. (4.24) in Ref. [16]). Analogously, any
emitted photon may decay into an electron positron pair
(see, e.g., Eq. (3.50) in Ref. [16] for the corresponding
probability per unit time) although, due to the short thick-
ness of the crystal this process turned out to be negligible.
Moreover, and for the same reasons, the total pro-
bability of photon emission was much smaller than unity
in the simulations. Also, an energy Et ¼ αðωp=mÞε=3≈
3.9 × 10−7ε, with ωp ≈ 1.6 × 10−4m being the tungsten
plasma frequency, is emitted as transition radiation mostly
at photon energies ωt ≲ ðωp=mÞε ≈ 1.6 × 10−4ε [42], such
that it can be safely neglected. It is also worth mentioning
that it is appropriate to use here the probabilities within the
local field approximation because ξ ≈ 85 and, as we will
see below, χ ≲ 200 such that ξ3 ≫ χ (recall that each
electron essentially emits at most one photon)
[16,32,43–45]. In addition, the finite extension of the
crystal does not prevent the use of the CCF approximation
at ω ∼ ε [46] because, e.g., at large values of χ the
formation length lf of a photon with energy ω is lf ∼
ελC½24ðε − ωÞ=ω�1=3=mχ2=3 and at ω ∼ ε, i.e., at
ðε − ωÞ=ω ∼ 1, and χ ∼ 200 it is lf ∼ 0.1 μm ≪ L [16].
In Fig. 2(a) we report the distribution dNγ=dχ normal-

ized to unity, where dNγ ¼ ðdNγ=dχÞdχ is the total number
of photons emitted by all electrons with quantum parameter
between χ and χ þ dχ. Also, Fig. 2(b) shows the corre-
sponding photon intensity spectrum, i.e., the average
energy emitted per unit of photon energy. Figure 2(a)
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FIG. 1. Amplitude of the electric field of an atomic string of
tungsten along the h111i direction in units of 2Φ0=as ≈ 3.88 ×
1011 V=cm as a function of ϱ ¼ ρ=as for 0 ≤ ϱ ≤ ρc=as ≈ 6.28.
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FIG. 2. Left panels: Emitted photon number distributions (nor-
malized to unity) as functions of the electron quantum nonlinearity
parameter at the moment of emission, accounting for all emitted
photons [Fig. 2(a)] and for the photons emitted with an angle larger
than θc=2 with respect to the z axis [Fig. 2(c)]. Right panels:
Average energy emitted per unit of photon energy, accounting for
all emitted photons [Fig. 2(b)] and for the photons emitted with an
angle larger than θc=2 with respect to the z axis [Fig. 2(d)]. The
other parameters of the crystal and of the electron bunch are
reported in the text.
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shows that most of the photons are emitted at low values of
χ, as it is physically expected because the oscillating
electrons spend more time far from the strings where the
field is relatively small. However, a peak is visible
corresponding to the maximum allowed value of χ, which
is in good agreement with the value predicted by Eq. (4).
The presence of the peak at χmax can be explained by
employing the single-string model. In fact, the number of
photons dnγðχ; tÞ emitted between the times t and tþ dt
with the quantum nonlinearity parameter between χ
and χ þ dχ is given by the emission probability
½dPγðχ; tÞ=dt�dt times the number dneðχ; tÞ of electrons
emitting between t and tþ dt at a value of the quantum
nonlinearity parameter between χ and χ þ dχ. Now, within
the single-string model the parameter χ is a function of the
transverse distance ρ from the string. However, since the
field of the string vanishes at ρ ¼ 0 and (almost) at ρ ¼ ρc
featuring a maximum at ρmax (see also Fig. 1), two values
ρþ and ρ− of ρ correspond to any value of χ ∈ ðχðρcÞ; χmaxÞ
such that dχðρ�Þ=dρ≷0. By limiting to this range of
values of χ for the sake of simplicity [note that
χðρcÞ ≈ 1.8 × 10−3χmax], we can conclude that the total
number dNγðχÞ=dχ of photons emitted per units of χ is
given by

dNγ

dχ
¼

Z
L

0

dt
dPγðχ; tÞ

dt

X
i¼�

dñeðρi; tÞ
dρ

�
dχðρiÞ
dρ

�
−1
: ð5Þ

This equation clearly explains the appearance of the peak
at χmax in the quantity dNγ=dχ because the function
dñeðρ; tÞ=dρ ¼ dneðχðρÞ; tÞ=dρ is a smooth function of
ρ (at t ¼ 0 it corresponds to the uniform distribution of the
electrons on the xy plane) and dχðρÞ=dρ vanishes when
χðρÞ reaches its maximum.
Now, as we have observed, the spectrum in Fig. 2(a)

receives contributions from emissions occurring both at
high and at low values of χ and our aim is to identify an
observable quantity, which only stems from emissions
occurring at large values of χ. In order to isolate the
contribution of the photons emitted at high values of χ, we
make the following considerations again based on the
single-string model and, for the sake of simplicity, we
ignore the initial electron transverse velocity. Because of
their uniform distribution, most of the electrons have
initially a relatively large value of ρ. Now, these electrons
can emit at the maximum value of χ only when they cross
the region of largest field, which is relatively close to the
string (see Fig. 1). Thus, the emissions at large χ by these
electrons occur when the angle between the velocity of
these electrons and the z axis is close to the critical angle θc.
Correspondingly, the photons are essentially emitted with
angles with respect to the z axis of that order of magnitude.
The idea is then to isolate the emissions at high χ by
detecting only photons emitted at relatively large angles.
We have exploited this idea and, in Figs. 2(c) and 2(d),

decided to consider only photons emitted at angles larger
than θc=2, with the numerical value of the potential
depth UM of the Doyle-Turner potential (recall that
θc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jUMj=ε

p
). Figure 2(c) clearly shows that indeed

most of the photons emitted at large angles are also emitted
at the maximum value of χ. For the sake of a clear
visualization, both distributions in Figs. 2(a) and 2(c) have
been normalized to unity. Despite the normalization, we
can conclude that whereas in Fig. 2(a) the peak at high χ
was about 4 times lower than that at low χ, by cutting the
“straight” photons we obtain that the peak at high χ is about
2 times higher than the peak at low χ. Correspondingly
the spectrum in Fig. 2(d) is much “harder” than that in
Fig. 2(b). Also, we point out that by computing the total
number of emitted photons (in any direction), we found that
on average each electron emits 0.1 photons and that the
process of pair production by these photons is safely
negligible. This is an important virtue of the present setup,
which guarantees that the occurrence of multiple photon
emissions and the development of electromagnetic shower
can be ignored. Thus, the spectra in Figs. 2(b) and 2(d) are
essentially single-photon spectra that can be correspond-
ingly computed theoretically by employing the Furry
picture.
Now, in order to confirm more quantitatively that indeed

the spectrum Fig. 2(d) arises from photons emitted at large
values of χ, we first normalize the spectrum to unity, then
we rescale the photon energies to the initial electron energy,
and we compare the resulting spectrum with the “universal”
normalized expression of the single-photon intensity spec-
trum dEn=dω for large values of χ. It is worth reporting
this expression, which, appropriately normalized to unity,
reads [16]

dEn

dω
¼ 81

ffiffiffi
3

p

64π

�
ω

ε − ω

�
1=3 ε2 þ ðε − ωÞ2

ε2
: ð6Þ

This expression is valid for χ ≫ ω=ðε − ωÞ, i.e., it becomes
inapplicable only at the high-energy end of the spectrum
where the spectrum goes exponentially to zero (at
ω=ðε − ωÞ ≫ χ). However, if one integrates the asymptotic
expression of the differential intensity of radiation, which
corresponds to Eq. (6) when normalized to unity, one
already obtains the correct asymptotic of the total intensity
of radiation with the scaling αχ2=3 (see Eq. (4.28) in [16]). In
Fig. 3 we compare the normalized intensity spectrum
obtained with the angular cut (black solid curve) with
dEn=dω (red dashed curve), and we can see that the agree-
ment is good except at the end of the spectrumwheredEn=dω
formally diverges (and then becomes inapplicable).
Finally, we point out that the value of χmax ∼ 100 in the

present setup is close to optimal in the following sense. At
the present time to make theoretical predictions at such
large values of χ that αχ2=3 ≈ 1 is not possible because in
principle all higher-order radiative corrections have to be
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taken into account in any calculation. Instead, Fig. 2(c)
indicates that although χmax is much larger than unity
(≈170), we have αχ2=3max ≈ 0.2. In this way, although we have
computed the emission spectra only at the leading order and
by ignoring radiative corrections, we expect that corre-
sponding exact QED emission spectra (and then also the
experimental spectra) would differ from the results here
by ∼20% (according to the preliminary estimations in
Ref. [36], smaller corrections might be expected). A
complete theoretical analysis of the leading-order radiative
corrections, however, is beyond the scope of the present
Letter.
In conclusion, we have demonstrated that by employing

strong field radiation by electrons of a few-TeV energy
crossing a thin tungsten target, the fully nonperturbative
QED regime can in principle be approached and a clear
physical observable can be identified in the angularly
resolved single-photon intensity spectrum. High-energy
electron beams with energies of the order of a few TeV
can in principle be obtained at CERN by extracting the
proton beam from the LHC, which would render this
regime soon accessible experimentally for the first time.
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