
 

Optical Carrier-Wave Subcycle Structures Associated with Supercritical Collapse
of Long-Wavelength Intense Pulses Propagating in Weakly Anomalously

Dispersive Media

A. Hofstrand and J. V. Moloney
College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA

and Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721, USA

(Received 23 August 2019; revised manuscript received 8 November 2019; published 29 January 2020)

We predict the emergence of attosecond-duration structures on an optical carrier wave when intense,
long-wavelength pulses propagate through bulk media with weak anomalous dispersion. Under certain
conditions, these structures can undergo a new type of carrier-resolved supercritical collapse, forming
infinite spatiotemporal gradients in the field. The mathematical conditions for the onset of this singularity
are briefly overviewed, and we demonstrate with a full 3Dþ time (3þ 1) simulation that such structures
persist under realistic conditions for a 10 micron laser pulse propagating in air.
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In extreme nonlinear optics, broadband regions of anoma-
lous dispersion play a critical role in achieving spatiotem-
poral compression of ultrashort pulses in both condensed
and gaseous bulk media with wavelengths ranging from the
near-infrared to long-wavelength infrared (LWIR) [1–5].
Filament propagation in such media is typically modeled by
a generalized nonlinear Schrödinger equation (NLSE) [6] or
its nonlinear envelope extensions [7,8]. Although when
modeling femtosecond pulses at these longer wavelengths,
the NLSE and its generalizations fail to accurately describe
the relevant spatiotemporal reshaping of the pulse’s under-
lying carrier field [9]. A new paradigm emerges as one
transitions from a strongly dispersive, weakly nonlinear
physical setting to a strongly nonlinear, weakly dispersive
one as the driving laser wavelength tunes further into the
transparency gap of the relevant material. Strong self-
steepening of the underlying optical carrier wave leads to
shock formation [10] and, in the case of media with normal
dispersion, singular gradients are regularized by harmonic
walk-off that leaves a train of internally generated higher
harmonics in the wake of the main pulse. This fundamental
modification to modeling pulse propagation ushers in the
potential for low-loss, long-range delivery of high-energy
pulses over multiple Rayleigh ranges spanning multiple
kilometers. The canonical mathematical description of such
ultrashort pulse evolution in this long-wavelength regime is
given by a generalization of the well-known Kadomtsev-
Petviashili [11] equation (gKPE) which propagates the
full field.
In this Letter, we analytically and numerically investigate

the full (3þ 1) gKPE carrier-wave-resolved model intro-
duced in [12] for ultrashort pulses propagating through
weakly dispersive media. One-dimensional, integrable [13]
models of carrier-resolved pulse propagation through

optical fibers with anomalous dispersion have been studied
extensively [14–16]. In contrast, detailed studies of the full
(3þ 1) problem of broadband pulse propagation through
bulk media with anomalous group velocity dispersion
(GVD) are far from complete. Our analysis of the gKPE
leads to sufficient conditions for an LWIR intense, ultra-
short laser pulse propagating through the atmosphere to
undergo supercritical collapse. Indeed, our model predicts a
new type of optical collapse that is very different from the
well-known collapsing envelope solutions of the NLSE
[17,18] where the underlying carrier wave is dynamically
absent. We observe the formation of ultraintense, subcycle
attosecond-duration spatiotemporal structures in the actual
carrier field, which occur well before the self-focusing
collapse point. Such extreme gradient subcycle waveforms
could be used to drive quantum wave packet trajectories
during tunnel ionization, to drive relativistic laser plasma
interactions and laser wakefield electron acceleration,
producing much shorter electron pulses than standard radio
frequency accelerators. Generated electron pulses, with
energy reaching the multi-GeV range, could be used to
drive table-top ultrashort x-ray sources with unprecedented
brilliance and to probe photoinduced dynamics by ultrafast
electron or x-ray diffraction. While our primary goal in this
Letter is to identify singular ultrafast subcycle waveforms
that source electron dynamics, we recognize the importance
of eventually including a quantum description of the
electron motion. Unfortunately, this is currently beyond
the capability of existing computational resources for the
situation discussed here. State of the art simulations include
(3þ 1) Maxwell coupled to a Schrödinger equation con-
fined to extremely small micron-scale volumes limited to a
10 μm propagation distance [19] and, more recently, a
(1þ 1) unidirectional propagator coupled to a H atom
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Schrödinger equation was simulated in [20], albeit over
millimeter propagation distances. With the recent emer-
gence of numerous experimental techniques capable of
directly resolving optical carrier waves (for instance, see
[21–24]), we anticipate that these subcycle structures
should be readily observable, especially for the long
wavelengths under consideration here. We numerically
track the onset of extreme temporal and spatial (transverse)
gradients as the pulse propagates, which are predicted by a
rigorous virial argument. For our initial pulse to satisfy the
sufficient conditions leading to this supercritical collapse, it
is crucial to find media with weak and sufficiently broad
regions of anomalous GVD. Finally, our predictions are
validated in the realistic physical setting of atmospheric
propagation by simulating the (3þ 1)-dimensional unidi-
rectional-pulse-propagation equation (UPPE) [25].
In the case of atmospheric transmission, regions of

anomalous GVD are clearly observed in the extensive
HITRAN database [26] shown in Fig. 1. These regions
for air are centered around approximately 4 and 10 μm. It is
also evident from Fig. 1(b) that both of these anomalous
regions are far enough removed from the absorption bands
so that significant pulse power may be transmitted at these
wavelengths for appropriately bandwidth-limited pulses.
The anomalous region near 4 μm is due to the vibrational
absorption bandof carbon dioxide centered at 4.26 μm[seen
in Fig. 1(b)]. The significantly broader anomalous region in
the LWIR is located between the absorption bands of water
and carbon dioxide at approximately 6.2 and 14.6 μm,
respectively. In this Letter, we focus our attention on the
anomalous, low-loss region centered around 10 μm, clearly
observed in Figs. 1(c) and 1(d) (zoomed-in HITRAN).
Even though significant physical insight is gained by

rigorously analyzing the gKPE as a model for LWIR pulse
propagation through the atmosphere, one of course cannot
neglect the multitude of other physical mechanisms inherent

in the process of filamentation which are not included in our
simplified gKPE model. These mechanisms include the
defocusing and absorption effects of generated plasma,
especially at the relatively high pulse intensities considered
here, aswell as the breakdown of the paraxial approximation
as the beam undergoes extreme self-focusing. To study how
these mechanisms influence the collapsing dynamics pre-
dicted by the gKPE model, we also simulate a 10 μm pulse
using the UPPE, along with the most up-to-date, inclusive
model for light-matter interactions for LWIR pulses propa-
gating through the atmosphere which has recently been
experimentally validated in [27]. Remarkably, we find that
the subcycle, solitonlike structures persist in the more
complete UPPE simulation, although, unlike the gKPE
solution, these structures do not collapse to a mathematical
singularity but are eventually regularized by the pulse’s
interaction with generated plasma.
The gKPE (1) is our general carrier-wave-resolved

model for the paraxial propagation of ultrashort laser
pulses through homogeneous and isotropic, weakly dis-
persive materials with instantaneous Kerr nonlinearity

∂zEþ
XN
j¼1

ð−1Þjϵdisp;j∂2jþ1
t Eþ ϵnlE2∂tE ¼ ϵdiffΔ⊥∂−1

t E;

ð1Þ
where Eðz; t; x⃗Þ is the linearly polarized electric field in
normalized units propagating along the z direction in a
reference frame comoving with pulse’s group velocity.
Similar models have been proposed in [28–30]. Note, in
(1), the operator ∂−1

t is defined by its Fourier transform i=ω.
The dimensionless parameters ϵnl, ϵdisp;j, and ϵdiff corre-
spond to the relative strengths of third-order nonlinearity,
(2jþ 1)th-order (mixed) dispersion, and diffraction in two
transverse dimensions, respectively. The explicit defini-
tions are

ϵdiff ¼ c=ð2n0ω0w2
0ÞL; ϵdisp;j ¼ pjω

2jþ1
0 L;

ϵnl ¼ 4I0n2ω0L=c; ð2Þ
where c is the speed of light in vacuum, ϵ0 is the
permittivity of free space, ω0 is the pulse’s central angular
frequency, n0 is the index of refraction at the central
frequency, w0 is the initial pulse’s radial width, L is the
propagation length scale along z, n2 is the nonlinear index,
pj are the polynomial-fit coefficients of kðωÞ around ω0,
and I0 is the pulse’s initial peak intensity. Various versions
of the gKPE have been studied extensively in the math-
ematical literature [31]. A version of Eq. (1) was originally
used to model the self-focusing collapse of sound in
antiferromagnets [32]. If one neglects the transverse
dynamics and assumes cubic dispersion, (1) becomes
the well-known modified Korteweg-deVries equation
(mKdVE), which can be solved exactly using the inverse

FIG. 1. Dispersion and absorption of infrared light in the
atmosphere from the HITRAN database [26]. (a) Real and
(b) imaginary parts of the electric susceptibility. (c), (d) are
zoomed-in plots of (a) and (b) around the anomalous region
centered at 10 μm (∼30 THz).
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scattering method [13]. In addition, if the medium exhibits
weak anomalous dispersion, these (1þ 1) solutions are
directly related to the subcycle multisolitons first observed
in the seminal work by Zabusky and Kruskal [33], with
applications to shallow water waves, collisionless-plasma
magnetohydrodynamic waves, and long waves in anhar-
monic crystals. We have found that the (3þ 1)-singular
structures on the carrier wave observed in this Letter appear
deeply connected to the soliton solutions of the reduced,
small dispersion mKdVE. As a consequence, we can also
predict that observable subcycle solitons will emerge
superimposed on the optical carrier wave in (1þ 1) wave-
guided structures for long-wavelength ultrashort pulses
centered on spectral regions with sufficiently weak anoma-
lous dispersion.

H½E� ¼ −
1

2

XN
j¼1

ϵdisp;j

Z
R3

ð∂j
tEÞ2dtdx⃗

þ 1

2
ϵdiff

Z
R3

j∂−1
t ∇⊥Ej2dtdx⃗

−
1

12
ϵnl

Z
R3

E4dtdx⃗;

E½E� ¼
Z
R3

E2dtdx⃗: ð3Þ

Even though the classical KP equation (N ¼ 1), which
includes only one transverse dimension and has quadratic
nonlinearity, is integrable, the integrability of equation
(1) is lost in higher dimensions and for higher orders of
nonlinearity or dispersion. Thus, one must rely on broader
partial differential equation arguments when analyzing
(1) in general. Indeed, such arguments are not easily
applicable to the pseudodifferential UPPE and is the major
reason for introducing the gKPE model in the first place.
All of these arguments rely on the two conserved quantities
given in (3), where H is known as the Hamiltonian and E is
the pulse’s physical energy according to (1). These con-
served quantities can be formally derived by formulating
(1) via its Lagrangian and appropriately applying Noether’s
theorem. The constancy of both H and E is vital to proving
optical collapse. The mathematical arguments that solu-
tions to (1) can become singular are in many ways
analogous to those used to prove the envelope collapse
leading to filamentation of the better-known NLSE in
higher dimensions, which also has a Hamiltonian formu-
lation. In the case of the NLSE, the Hamiltonian is
expressed in terms of the field’s envelope, with the inverse
time derivative in (3) replaced by the fixed parameter 1=ω
so that all optical carrier-related information is lost.
In the case of the gKPE, rigorous justification of

sufficient conditions for the solution of (1) to become
singular after a finite propagation distance is given by the
so-called virial theorem [32,34,35]. Specifically, it states
that if H½E0� is negative for an initial pulse in (3þ 1) and
the material’s dispersive parameters are purely anomalous

(ϵdisp;j < 0 for 1 ≤ j ≤ N), then there exists a positive,
finite Z such that the L2 norm of ∇⊥E goes to infinity as
z → Z−. For the interested reader, we extend this discussion
in the Supplemental Material [36] to include a more general
mathematical form of (1) and explicitly state the required
conditions so that the virial theorem applies. The require-
ment that H½E0� < 0 is contingent on the ambient medium
and initial pulse properties, which we turn to now.
Here, we choose a 100 fs pulse with a temporal Ricker

envelope (second-time derivative of a Gaussian) centered
at 10 μm over the weak anomalous window shown in
Figs. 1(c) and 1(d). The Ricker waveform is spectrally close
to the more-common Gaussian pulse and chosen only so
that the Hamiltonian (3) can be integrated explicitly.
Indeed, we have performed numerous simulations, using
both Ricker and Gaussian pulses, and found very similar
carrier-field evolutions. In the case of air in the LWIR, the
sign of GVD is fixed over a sufficiently broad region so that
only the cubic term in (1) is needed for an accurate fit over
our pulse’s initial bandwidth. Figure 2 shows a contour plot
of the mathematical collapse point, Z, for this pulse (with a
transverse Gaussian profile) predicted by the virial theorem
as an explicit function of the initial pulse’s beam waist
and peak intensity. The purple-shaded region along the
lower and left side of Fig. 2 represents conditions where
H½E0� > 0 and so the virial theorem does not apply. As
expected, Fig. 2 shows that high intensity, small beam-
width pulses collapse sooner than their less intense, larger
counterparts. Actually, the point Z is where the variance
functional [12] vanishes and denotes an upper bound for the
location of supercritical collapse. This means that as the
pulse approaches the point of singularity (≤ Z), the energy
in the collapsing filament limits to zero linearly in z.
Similar to the collapsing envelope of the NLSE, we find
that certain solutions of the gKPE undergo supercritical
collapse in (3þ 1) and possible critical collapse in (2þ 1)
(see the Supplemental Material [36] for further details).
We now simulate this 100 fs, 10 μm Ricker pulse

propagating through air where the rigorous and sufficient
conditions for supercritical collapse have been met. In our
gKPE simulation, we use the relatively high peak intensity

FIG. 2. Analytically obtained collapse point, Z, according to
the virial theorem for the pulse considered here propagating
through air as an explicit function of beam waist (e−2 radius) and
initial peak intensity.

PHYSICAL REVIEW LETTERS 124, 043901 (2020)

043901-3



I0 ¼ 2 × 1017 Wm−2 andw0 ¼ 2.83 mm.As seen in Fig. 2,
this pulse quickly becomes singular at or before Z ¼ 1.6 m.
Our gKPE numerics are performed using a pseudospectral
fourth-order Runge-Kutta, exponential-time-differencing)
scheme introduced in [37]. Figure 3 shows the temporal,
on-axis reshaping of this pulse as well as its evolving radial
profile. At only 4 cm, plots (a) and (b) in Fig. 3 show the
formation of near shock fronts in the carrier wave. This
initial dynamic appears to be quite generic when modeling
LWIR ultrashort pulses in the weakly dispersive or strongly
nonlinear regime and has been observed in [9] for the case of
weak, normal GVD (see the Supplemental Material [36] for
illustration of normal regularization [38,39]). As the pulse
continues to propagate, the mechanism of weak anomalous
GVD becomes important, and Figs. 3(c) and 3(d) show the
emergence of localized structures in the actual carrier field,
confined to temporal regions well below the optical cycle.
After 15 cm of propagation, Figs. 3(e) and 3(f) show the
spatiotemporal “squeezing” of these structures due to self-
focusing and anomalous GVD. In this situation, the steep-
ening gradients cannot be regularized in the gKPE model,
and as expected, the field eventually becomes singular. At
15 cm, we measure the dominant structure in Fig. 3 to have
an FWHM of 0.66 fs localized over a small fraction of a
millimeter and with a peak field value greater than 2.5 times
that of the initial pulse. We are unable to accurately resolve

the run-away gradients in Fig. 3 past 15 cm, given our
designated error tolerance, although we expect the observed
structures to indefinitely intensify and shrink in both space
and time under these ideal circumstances. Additional results
and details pertaining to the collapsing simulation shown in
Fig. 3 are given in the Supplemental Material [36].
Finally, we display the results of a full UPPE simulation

for a 100 fs, 10 μm temporal Gaussian pulse with I0 ¼
1 × 1017 Wm−2 and the same initial beam waist used in
Fig. 3 propagating through air. We use a lower initial peak
intensity to reduce the effects of immediate photoioniza-
tion. Figure 4 shows how the beam waist evolves in z and
displays snapshots of the on-axis field in the following
three scenarios: (i) using only the purely anomalous fitted
dispersion from our gKPE simulation, (ii) using the fitted
anomalous dispersion with the complete effects of plasma
generation included [27], and (iii) using the real (unfitted)
HITRAN dispersion shown in Figs. 1(a) and 1(b) and
including plasma generation. Clearly, without the regular-
izing effects of plasma present, Fig. 4(a) shows the pulse
collapse to a point at which the numerics are unable to
resolve past approximately 60 cm. This simulation vali-
dates the singular predictions of the gKPEmodel in the bare
UPPE computation. Figure 4(b) shows the corresponding
on-axis, temporal waveform for this simulation. One can

FIG. 3. Spatiotemporal reshaping (blue) of an initial 100 fs,
10 μm Ricker pulse (red-dashed) propagating through air where
sufficient conditions for supercritical collapse are met. The spatial
profiles are taken at tmax ≈ 4.0, 5.8, and 9.8 fs in plots (b), (d), and
(f), respectively.

FIG. 4. The first row is a UPPE simulation using fitted
(anomalous) dispersion. Plot (a) is the radial evolution, and plot
(b) is the pulse’s on-axis, temporal profile at a fixed z. The second
row is a UPPE simulation of the same pulse using the same fitted
dispersion, but with the effects of plasma generation included. The
third row is a complete UPPE simulation of the same pulse, using
the rawHITRANdata and including the effects plasma generation.
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readily observe the formation of coherent subcycle struc-
tures on the carrier wave, similar to those observed in the
gKPE model. Figure 4(c) shows how the generation of
plasma in the atmosphere prevents an extreme mathemati-
cal collapse from occurring although, remarkably, the
subcycle structures persist in the pulse’s temporal profile
[Fig. 4(d)] and are present well before the nonlinear focus is
reached. Furthermore, these structures are manifest even in
the full HITRAN UPPE model seen in Fig. 4(f).
In conclusion, we analytically predict and numerically

verify the spontaneous emergence of extreme, attosecond-
duration spatiotemporal singular structures within individ-
ual cycles of a long-wavelength ultrashort laser pulse
propagating in a transparent nonlinear medium with a
broad and weak region of anomalous dispersion. These
singular structures are seen to be robust enough to persist in
physical settings where plasma generation becomes sig-
nificant. We anticipate that the experimental realization
of these singularities will open up a whole new vista of
research in extreme nonlinear optics and attosecond sci-
ence. Recent developments in engineering dispersion land-
scapes using hollow core fibers should also greatly expand
the potential for application and offer new opportunities to
develop compact high power and energy sources.

This material is based upon work supported by the Air
Force Office of Scientific Research under Grant
No. FA9550-19-1-0032. The authors greatly appreciate
technical help from P. Panagiotopoulos with Fig. 4.
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