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We study the collective radiative decay of a system of two two-level emitters coupled to a one-
dimensional waveguide in a regime where their separation is comparable to the coherence length of a
spontaneously emitted photon. The electromagnetic field propagating in the cavity-like geometry formed
by the emitters exerts a retarded backaction on the system leading to strongly non-Markovian dynamics.
The collective spontaneous emission rate of the emitters exhibits an enhancement or inhibition beyond the
usual Dicke superradiance and subradiance due to self-consistent coherent time-delayed feedback.
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Introduction.—Long-distance interactions are a central
tenet of many quantum systems and processes, including
large-scale quantum networks, distributed quantum sens-
ing, and information processing [1–5]. When the separa-
tions between emitters become comparable to the
coherence length of the photons mediating their interaction,
interference properties of the electromagnetic (EM) field
can be modified due to retardation. In such cases, the
backaction of the EM field on the emitters leads to coherent
time-delayed feedback on the system dynamics [6,7], thus
rendering it non-Markovian [8–11].
Non-Markovian open system dynamics can have a

variety of physical origins such as structured bath spectral
densities, strong system-bath couplings, low temperatures,
or initial system-bath correlations among others [9,10,12–
15]. The effects of non-Markovianity have been investi-
gated in collective atomic states in the context of structured
reservoirs [16–20] and in the strong-coupling regime [21].
Furthermore, delay-induced non-Markovian dynamics has
been previously shown in the context of spontaneous
emission of single atoms [22–30], bound states in con-
tinuum (BIC) of the EM field [31–35], and entanglement
generation in emitters coupled to waveguides [4,36].
Additional insights into non-Markovian effects in such a

regime can be gained from studying the simple, yet rich
quantum optics phenomenon of collective spontaneous
emission of two two-level emitters. Cooperative effects
in spontaneous emission have an extensive historical back-
ground [37–40], and have been experimentally observed
across a range of physical systems [41–49]. While the
influence of retardation on these effects has been previously
studied in Refs. [50,51], the non-Markovian dynamics

emerging in macroscopically delocalized collective sys-
tems is yet unexplored.
In this Letter we study the collective radiative dynamics

of a pair of macroscopically separated emitters and show
that it exhibits non-Markovian features caused by self-
consistent coherent time-delayed feedback. We specifically
consider here the emitters are prepared in a superradiant or
subradiant electronic state, and present an exact analytical
solution of the dynamics of the collective spontaneous
emission. We demonstrate that the retarded backaction of
the EM field on the emitters can lead to a further enhanced
(inhibited) spontaneous emission rate for superradiant
(subradiant) states beyond the usual Dicke superradiance
(subradiance) [37,38].
We consider two two-level emitters coupled to a wave-

guide are separated by a distance d comparable to the
coherence length∼vg=γ of a spontaneously emitted photon,
with vg being the group velocity of the field and γ the
spontaneous emission rate of the individual emitters (see
Fig. 1). To gain an intuitive understanding of the non-
Markovian nature of this system, consider the following
apparent “superradiance paradox”: Assume that the dis-
tance d between two emitters prepared in a superradiant
state is smaller than the coherence length of an independ-
ently emitted photon, but larger than that of a superradiant
photon, vg=γ > d > vg=ð2γÞ. Given that superradiance is
an interference effect, one would expect to observe super-
radiant emission if there is no way to distinguish which
atom emitted the field [52]. Now if the emitters radiate
collectively, with an emission rate 2γ, then the coherence
length of the emitted photons [vg=ð2γÞ] is too short to allow
for the fields radiated by the two emitters to interfere,
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suggesting that they should have emitted independently. On
the other hand, if we assume that they do emit independ-
ently, then the coherence length of the emitted photons
(vg=γ) is long enough that there should be interference and
as a result the emitters should emit at the superradiant rate
of 2γ instead. This seeming paradox points to the failure of
the Markov approximation: the conventional notion of an
exponential decay defining the photon coherence length is
no longer valid, and it is necessary instead to consider a full
non-Markovian treatment of the system dynamics.
Formal development.—The total Hamiltonian for the

emittersþ field system is H ¼ HE þHF þHint, where

HE ¼ ℏω0

P
m¼1;2 σ̂

ðmÞ
þ σ̂ðmÞ

− is the free Hamiltonian for

the emitters of resonance frequency ω0, with σ̂ðmÞ
þ is the

creation operator of an excitation in the mth emitter; HF ¼
ℏω

R∞
0 dω½â†ðωÞâðωÞ þ b̂†ðωÞb̂ðωÞ� is the free

Hamiltonian for the field, with âðωÞ and b̂ðωÞ the anni-
hilation operators for the right- and left-propagating field
modes of the waveguide, respectively; and Hint is the
emitter-field interaction Hamiltonian.
We proceed by making the electric-dipole and rotating-

wave approximations (RWA) and expressing the emitters-
field interaction Hamiltonian in the interaction picture with
respect to the total free Hamiltonian HE þHF as

Hint ¼ ℏ
X2
m¼1

Z
∞

0

dω½gðωÞσ̂ðmÞ
þ fâðωÞeiωxm=vg

þ b̂ðωÞe−iωxm=vgge−iðω−ω0Þt þ H:c:�; ð1Þ

where gðωÞ is the atom-field coupling strength [53,56]. To
isolate the non-Markovian behavior arising from the
retardation effects from that due to a structured reservoir,

we assume a flat spectral density of the field modes around
the resonance of the emitters such that gðωÞ ≈ gðω0Þ.
Assuming that the total emitters plus field system is

initially prepared in the single-excitation manifold, and
considering that in the RWA the Hamiltonian preserves the
total number of excitations, the state at time t > 0 is

jΨðtÞi¼
X2
m¼1

cmðtÞσ̂ðmÞ
þ jg;g;f0gi

þ
Z

∞

0

dω½caðω;tÞâ†ðωÞþcbðω;tÞb̂†ðωÞ�jg;g;f0gi;

ð2Þ

where cm and ca;bðωÞ are the excitation amplitudes for the
mth emitter and the guided field modes with frequency ω,
respectively, and jg; g; f0gi is the ground state of the total
system, with jf0gi the field vacuum state. Tracing out the
field modes, evolution of emitter excitation amplitudes is
given by [61]

_cmðtÞ ¼ −
γ

2
½cmðtÞ þ βcnðt − d=vgÞΘðt − d=vgÞeiϕp � ð3Þ

for m ≠ n, where ϕp ≡ k0d ¼ 2pπ is the field phase
difference upon propagation, which we assume to be an
integer multiple of 2π, γ ≡ γ1D þ γ3D is the total sponta-
neous emission rate, and γ1D ¼ βγ ≡ 2πjgðω0Þj2 is the
spontaneous emission rate into the waveguide, with β the
coupling efficiency of the emitters to the waveguide.
The second term in Eq. (3) represents the retarded
backaction of the other emitter via the field with a
delay t ¼ d=vg.
For emitters initially in the superradiant or subradiant

states jΨsup
subi≡ ð1= ffiffiffi

2
p Þðjegi � jgeiÞ [62], one can write the

Laplace transformed coefficients c̃mðsÞ≡
R
∞
0 dt e−stcmðtÞ

as

c̃supðsÞ ¼
1ffiffiffi

2
p

γ½s̃þ 1=2þ βe−ηs̃=2� ; ð4Þ

c̃subðsÞ ¼
1ffiffiffi

2
p

γ½s̃þ 1=2 − βe−ηs̃=2� ; ð5Þ

where s̃≡ s=γ and η≡ dγ=vg is the separation between the
emitters normalized by the photon coherence length. Here
c̃sup ¼ c̃sup1 ¼ c̃sup2 and c̃sub ¼ c̃sub1 ¼ −c̃sub2 are the Laplace
space probability amplitudes for the superradiant and
subradiant cases, respectively [63].
Consider next the case where the emitters are slightly

separated, η ≪ 1. Up to linear terms in η

c̃supsubðs̃Þ ≈
1ffiffiffi

2
p ½sð1 ∓ βη=2Þ þ γ=2ð1� βÞ� ; ð6Þ

FIG. 1. Two two-level emitters prepared in a collective state
coupled to an optical waveguide. The emitters are located at
positions x1;2 ¼ �d=2, with d comparable to the coherence
length ∼vg=γ. The rates γ3D and γ1D refer to the emitter
spontaneous emission rates into free space and guided modes,
respectively. The mode operators âðωÞ and b̂ðωÞ refer to
annihilation operators for the right- and left-propagating wave-
guide modes, respectively.
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which yields an effective spontaneous emission rate

γsupsub ≈
1� β

1 ∓ βη=2
γ: ð7Þ

For a small but finite delay 0 < η ≪ 1, this can potentially
exceed the usual Dicke superradiant emission rate of 2γ for
β ¼ 1. Also, for a subradiant state with an imperfect
coupling (β < 1), the effective decay for slightly separated
emitters can be slower than that for coincident ones. This
surprising enhancement and inhibition of the collective
spontaneous emission can be attributed to a stimulated
emission as the correlated field emitted from one of the
emitters interferes with that from the other [64]. The
separation dependence of the collective emission rate, in
addition to the phase difference, demonstrates the influence
of retardation on the interference.
We now consider the general case of arbitrarily separated

emitters, for which we present an exact analytical solution
of the equations of motion (3) based on a well-developed
mathematical treatment of delay differential equations (see
[65] and the Supplemental Material (SM) [66] for details).
The general expression for the excitation amplitudes of the
emitters is

csupsubðtÞ ¼
1ffiffiffi
2

p
X
n∈Z

αð�Þ
n e−γ

ð�Þ
n t=2; ð8Þ

where αð�Þ
n ≡ f1þWn½∓ ðη=2Þβeη=2�g−1 and the effective

decay rate γð�Þ
n ≡ γf1 − 2Wn½∓ ðη=2Þβeη=2�=ηg, with

WnðxÞ the nth branch of the Lambert W function, which
is commonly used to describe systems that exhibit time-
delayed feedback [61,65]. We now discuss the conse-
quences of this analytical solution, which is the main
result of this work.
Results.—Consider first the dynamics of a superradiant

initial state. From Eq. (8) and the properties of the Lambert-
W function, one finds that the superradiant solution has
imaginary exponents for η > ηc, where we have introduced
the normalized critical distance ηc ≡ 2W0½1=ðeβÞ� [61].
Thus for η ≥ ηc, the atomic excitation amplitudes exhibit
oscillations as the atoms decay to their ground state. These
can be understood in terms of a field wavepacket bouncing
back and forth between the emitters [50,66]. For β ¼ 1 this
occurs for separations d > 0.56vg=γ, as shown in Fig. 2.
For separations η < ηc the emitters radiate independently

until a time γt ¼ η and collectively afterwards, with an
instantaneous decay rate given by

γinst ¼ γ

�
1 −

W0½−ðη=2Þβeη=2�
η=2

�
: ð9Þ

For a given value of β, this rate reaches a maximum
γmax
inst whenthenormalizedemitterseparationequals itscritical
value η ¼ ηc, with γmax

inst =γ ¼ 1 − f½W0ð−1=eÞ�=W0½1=

ðeβÞ�g, as shown in Fig. 3. In the absence of losses and for
perfect emitter-waveguide coupling efficiency (β ¼ 1), the
maximum instantaneous spontaneous emission rate is
γmax
inst =γ ≈ 4.59, in stark contrast with superradiant emission
in Markovian systems.
In the case of a subradiant initial state, for β ¼ 1, the

steady state of the dynamics corresponds to a BIC [33].
The probability of reaching the BIC, starting initially in
the subradiant state of the atoms, is given by
jhΨðt → ∞ÞjΨBICij2 ¼ 1=ð1þ η=2Þ [73]. The total prob-
ability of the emitters being excited in the steady state is
jcsub1;2 ð∞Þj2 → f1=½2ð1þ η=2Þ2�g; see Fig. 2(b). We also
note that for an initial subradiant state with a delay of
η ≈ 0.8, it is possible to achieve a maximal emitter-field
steady state entanglement [66].
It is also instructive to explore the cooperative nature

of the atom-field dynamics from the perspective of the
emitted field intensity Iðx; tÞ ∝ hΨðtÞjÊ†ðx; tÞÊðx; tÞjΨðtÞi,
where the electric field operator is Êðx; tÞ ∝

(a)

(b)

FIG. 2. Emitters excitation probabilities as a function of time
and for different separations η for initial (a) superradiant and
(b) subradiant states, assuming perfect coupling efficiency
(β ¼ 1). Solid and dotted curves depict the dynamics for η ¼
0 and η ¼ ∞, respectively. For intermediate emitter separations,
the emitters decay independently with a rate γ until γt ¼ η
(indicated by the dashed vertical lines), and collectively after-
wards. For the critical separation η ≈ ηc ≈ 0.56, we observe an
instantaneous superradiant spontaneous emission rate of
γinst ≈ 4.59γ. The 1=e value of the initial emitters excitation
probability is reached first for coincident emitters (depicted by
the gray horizontal dashed-dotted line). In the subradiant case the
emitter excitation probability reaches the asymptotic value
ð1þ η=2Þ−2, shown by the horizontal dashed-dotted lines.
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R
∞
0 dk½âðkÞeikx þ b̂ðkÞe−ikx�eiωt and jΨðtÞi the state of the
system (see [66] for details). Figure 4 shows that the fields
emitted by the two emitters in the superradiant (subradiant)
case interfere constructively (destructively) when the light
cones of the two emitters reach each other. Thereafter,
depending on their relative phase they produce an inter-
ference pattern that is either constructive, leading to a
collective “superduperradiant” burst with an instantaneous
emission rate greater than 2γ, or destructive, resulting in the
a perfect reflection of the field into the optical cavity
created by the two atoms. The nonexponential decay of the
emitters is an unambiguous signature of the non-Markovian
evolution of the system, a result of the self-consistent
backaction of the EM field bath, which is accounted for by
a departure from the usual Lindblad dynamics. We further
quantify the non-Markovianity of the system in the
Supplemental Material [68], which shows that the system
is non-Markovian for any value of η, approaching a
Markovian behavior for η → 0.
Noting that in the presence of delay the instantaneous

collective decay rate can exceed that of standard Dicke
superradiance, one might wonder if the total collective
emission into the waveguide also gets enhanced. An
important figure of merit to quantify the collective
nature of the system in this regard is its cooperativity C≡
γin=γ3D [74], such that γin ¼ limt→∞

R∞
0 dω½jcaðω; tÞj2 þ

jcbðω; tÞj2� is the fraction of the field emitted into the
waveguide and γ3D ¼ γð1 − βÞ is the fraction of the field
that escapes out to the nonguided modes [75]. This can be
evaluated as [66]

Csupsub ¼
β

1 − β

X
m;n

αð�Þ
n αð�Þ

m
�

γð�Þ
n þ γð�Þ

m
�

½2� fe−ηγð�Þ
n =ð2γÞ þ e−ηγ

ð�Þ
m

�=ð2γÞg:� ð10Þ

For η > 0, the cooperativity for a superradiant state is
reduced compared to that of coincident emitters (η ¼ 0) as
the total collective emission into the guided modes
decreases with the emitter separation. In contrast, for an
antisymmetric state we find an enhanced emission into the
waveguide as η is increased. This is due to the emission of
the field into guided modes by the individual emitters until
γt ¼ η, before they start acting collectively [see Fig. 4(b)].
Given that cooperativity is an important figure of merit in
quantum information applications, this result illustrates that
retardation effects need to be carefully considered in
quantum network protocols based on long distance
emitters [76].
Summary and outlook.—We have shown that the col-

lective radiative decay of two emitters coupled to a one-
dimensional waveguide is subject to non-Markovian
modifications due to the time-delayed backaction of the
electromagnetic field upon the emitters. When prepared in a
superradiant initial state they can exhibit time-dependent
decay rates that can instantaneously surpass the standard
Dicke superradiance rate. The system also allows for long-
lived subradiant states characterized by a bound state in the
field trapped in the region between the emitters. These
effects can be understood as a combination of Dicke
superadiance or subradiance and a retardation of the field
wavepacket where the electromagnetic field senses its
boundary conditions with a significant delay.
A key parameter for characterizing the dynamics is the

emitter separation relative to the photon coherence length
η≡ dγ=vg. It captures the combined physical origin of non-
Markovian behavior, as an appreciable value of η can be
achieved by increasing the emitter separation d, but also by
increasing the system-environment coupling as in [36] or
by exploiting slow group velocities achievable in the
presence of a band gap or near a band edge [20].
Importantly, as η is increased the system dynamics requires
keeping track of field correlation functions of increasing
order. We note that the non-Markovianity in this case arises

FIG. 3. Instantaneous decay rate γmax
inst (blue solid line) and

associated critical emitter separation ηc (red dashed-dotted line)
as a function of the emitter-waveguide coupling efficiency β for
an initial superradiant state. The horizontal dashed line depicts an
instantaneous collective emission rate of 2γ, which corresponds
to a coupling efficiency of β ≈ 0.13. This illustrates that the
collective emission rate of 2γ of usual Dicke superradiance can be
exceeded for sufficiently large emitter-waveguide coupling effi-
ciency and appropriate emitter separations.

FIG. 4. Normalized field intensity as a function of position and
time for η ¼ 0.5 and (a) superradiant and (b) subradiant initial
state. The positions of emitters at γx1;2=ð2vgÞ ≈�0.25 are
depicted by the vertical dashed line. As the field from one of
the emitters reaches the other at γt ¼ η (dashed-dotted line), their
interference results in either a collective radiation burst or
reflection of the field into the cavity formed by the emitters.
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explicitly due to retarded backaction effects, despite having
a flat spectral density for the bath.
Experimental observations of these effects could be

realized across a number of platforms, including quantum
dots in photonic waveguides [48], atoms near optical
nanofibers [47,77,78], and superconducting qubits coupled
by coplanar waveguides [79,80]. Table I in the SM [66]
summarizes experimental parameters accessible so far. For
a system of atoms coupled to nanofibers, values of η ∼ 1
have already been realized [78]. Given the rapid exper-
imental progress in all these platforms, the retarded
collective effects studied here can become relevant in the
near future.
With the emerging possibility of preparing collective

dipoles subject to internal retardation effects and observing
their associated complex dynamics in sharp contrast with the
more familiar case of emitters confined in subwavelength
regions, our work adds a new intricacy that has been little
explored in the past. Given that the enhancement in the
retarded collective decay of two emitters relies on pairwise
time-delayed feedback, it will be interesting to determine the
scaling of these effects with the number of emitters. We also
note that similar dynamics can arise in a system of linear
oscillators [81], indicating that such collective retarded
dissipation should be observable in classical systems as
well. It then would be interesting to extend the present
dynamics from the single-excitation case considered here to
multiple excitations, where one can observe genuinely
quantum non-Markovian effects, such as the phenomenon
of superfluorescence [82] with retardation, where all the
emitters decay collectively from a fully excited state.

P. S. and K. S. are grateful to Luis A. Orozco and
William D. Philips for initiating the ideas for this work.
K. S. would like to thank Alejandro González-Tudela,
Daniel Malz, Darrick E. Chang, and Hyok Sang Han for
fruitful discussions, and Guiseppe Calajó for his BIC
contribution to the manuscript.

*kanu@umd.edu
†solano.pablo.a@gmail.com

[1] H. J. Kimble, The quantum internet, Nature (London) 453,
1023 (2008).

[2] R. J. Schoelkopf and S. M. Girvin, Wiring up quantum
systems, Nature (London) 451, 664 (2008).

[3] H. Pichler, S. Choi, P. Zoller, and M. D. Lukin, Universal
photonic quantum computation via time-delayed feedback,
Proc. Natl. Acad. Sci. U.S.A. 114, 11362 (2017).

[4] H. Pichler and P. Zoller, Photonic Circuits with Time Delays
and Quantum Feedback, Phys. Rev. Lett. 116, 093601
(2016).

[5] W. Ge, K. Jacobs, Z. Eldredge, A. V. Gorshkov, and M.
Foss-Feig, Distributed Quantum Metrology with Linear
Networks and Separable Inputs Phys. Rev. Lett. 121,
043604 (2018).

[6] S. J. Whalen, A. L. Grimsmo, and H. J. Carmichael, Open
quantum systems with delayed coherent feedback, Quantum
Sci. Technol. 2, 044008 (2017).

[7] A. L. Grimsmo, Time-Delayed Quantum Feedback Control,
Phys. Rev. Lett. 115, 060402 (2015).

[8] H.-P. Breuer and F. Petruccione, Theory of Open Quantum
Systems (Oxford University Press, New York, 2002).

[9] H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini,
Colloquium: Non-Markovian dynamics in open quantum
systems, Rev. Mod. Phys. 88, 021002 (2016).

[10] I. de Vega and D. Alonso, Dynamics of non-Markovian
open quantum systems, Rev. Mod. Phys. 89, 015001
(2017).

[11] C. Fleming and B. L. Hu, Non-Markovian dynamics of open
quantum systems: Stochastic equations and their perturba-
tive solutions, Ann. Phys. (Amsterdam) 327, 1238
(2012).

[12] B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian
motion in a general environment: Exact master equation
with nonlocal dissipation and colored noise, Phys. Rev. D
45, 2843 (1992).

[13] B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian
motion in a general environment. II. Nonlinear coupling and
perturbative approach, Phys. Rev. D 47, 1576 (1993).

[14] R. Vasile, F. Galve, and R. Zambrini, Spectral origin of non-
Markovian open-system dynamics: A finite harmonic model
without approximations, Phys. Rev. A 89, 022109 (2014).

[15] S. Gröblacher, A. Trubarov, N. Prigge, G. D. Cole, M.
Aspelmeyer, and J. Eisert, Observation of non-Markovian
micromechanical Brownian motion, Nat. Commun. 6, 7606
(2015).

[16] I. Thanopulos, V. Karanikolas, N. Iliopoulos, and E.
Paspalakis, Non-Markovian spontaneous emission dynam-
ics of a quantum emitter near a MoS2 nanodisk, Phys. Rev.
B 99, 195412 (2019).

[17] N. Vats and S. John, Non-Markovian quantum fluctuations
and superradiance near a photonic band edge, Phys. Rev. A
58, 4168 (1998).

[18] S. John and T. Quang, Collective Switching and Inversion
without Fluctuation of Two-Level Atoms in Confined
Photonic Systems, Phys. Rev. Lett. 78, 1888 (1997).

[19] A. González-Tudela and J. I. Cirac, Markovian and non-
Markovian dynamics of uantum emitters coupled to two-
dimensional structured reservoirs, Phys. Rev. A 96, 043811
(2017).

[20] A. González-Tudela and J. I. Cirac, Quantum Emitters in
Two-Dimensional Structured Reservoirs in the Nonpertur-
bative Regime, Phys. Rev. Lett. 119, 143602 (2017).

[21] D. De Bernardis, T. Jaako, and P. Rabl, Cavity quantum
electrodynamics in the nonperturbative regime, Phys. Rev.
A 97, 043820 (2018).

[22] H. Gießen, J. D. Berger, G. Mohs, P. Meystre, and S. F.
Yelin, Cavity-modified spontaneous emission: From Rabi
oscillations to exponential decay, Phys. Rev. A 53, 2816
(1996).

[23] U. Dorner and P. Zoller, Laser-driven atoms in half-cavities,
Phys. Rev. A 66, 023816 (2002).

[24] T. Tufarelli, F. Ciccarello, and M. S. Kim, Dynamics of
spontaneous emission in a single-end photonic waveguide,
Phys. Rev. A 87, 013820 (2013).

PHYSICAL REVIEW LETTERS 124, 043603 (2020)

043603-5

https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/451664a
https://doi.org/10.1073/pnas.1711003114
https://doi.org/10.1103/PhysRevLett.116.093601
https://doi.org/10.1103/PhysRevLett.116.093601
https://doi.org/10.1103/PhysRevLett.121.043604
https://doi.org/10.1103/PhysRevLett.121.043604
https://doi.org/10.1088/2058-9565/aa8331
https://doi.org/10.1088/2058-9565/aa8331
https://doi.org/10.1103/PhysRevLett.115.060402
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1016/j.aop.2011.12.006
https://doi.org/10.1016/j.aop.2011.12.006
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1103/PhysRevD.47.1576
https://doi.org/10.1103/PhysRevA.89.022109
https://doi.org/10.1038/ncomms8606
https://doi.org/10.1038/ncomms8606
https://doi.org/10.1103/PhysRevB.99.195412
https://doi.org/10.1103/PhysRevB.99.195412
https://doi.org/10.1103/PhysRevA.58.4168
https://doi.org/10.1103/PhysRevA.58.4168
https://doi.org/10.1103/PhysRevLett.78.1888
https://doi.org/10.1103/PhysRevA.96.043811
https://doi.org/10.1103/PhysRevA.96.043811
https://doi.org/10.1103/PhysRevLett.119.143602
https://doi.org/10.1103/PhysRevA.97.043820
https://doi.org/10.1103/PhysRevA.97.043820
https://doi.org/10.1103/PhysRevA.53.2816
https://doi.org/10.1103/PhysRevA.53.2816
https://doi.org/10.1103/PhysRevA.66.023816
https://doi.org/10.1103/PhysRevA.87.013820


[25] T. Tufarelli, M. S. Kim, and F. Ciccarello, Non-Markovian-
ity of a quantum emitter in front of a mirror, Phys. Rev. A
90, 012113 (2014).

[26] A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A.
Knorr, Single Photon Delayed Feedback: AWay to Stabilize
Intrinsic Quantum Cavity Electrodynamics, Phys. Rev. Lett.
110, 013601 (2013).

[27] R. J. Cook and P.W. Milonni, Quantum theory of an atom
near partially reflecting walls, Phys. Rev. A 35, 5081
(1987).

[28] A. Beige, J. Pachos, and H. Walther, Spontaneous emission
of an atom in front of a mirror, Phys. Rev. A 66, 063801
(2002).

[29] P.-O. Guimond, A. Roulet, H. N. Le, and V. Scarani, Rabi
oscillation in a quantum cavity: Markovian and non-
Markovian dynamics, Phys. Rev. A 93, 023808 (2016).

[30] P.-O. Guimond, M. Pletyukhov, H. Pichler, and P. Zoller,
Delayed coherent quantum feedback from a scattering
theory and a matrix product state perspective, Quantum
Sci. Technol. 2, 044012 (2017).

[31] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and
M. Soljačić, Bound states in the continuum, Nat. Rev.
Mater. 1, 16048 (2016).

[32] P. T. Fong and C. K. Law, Bound state in the continuum by
spatially separated ensembles of atoms in a coupled-cavity
array, Phys. Rev. A 96, 023842 (2017).

[33] G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello,
Exciting a Bound State in the Continuum through Multi-
photon Scattering Plus Delayed Quantum Feedback, Phys.
Rev. Lett. 122, 073601 (2019).

[34] P. Facchi, D. Lonigro, S. Pascazio, F. V. Pepe, and D.
Pomarico, Bound states in the continuum for an array of
quantum emitters, Phys. Rev. A 100, 023834 (2019).

[35] F. Dinç, A. M. Brańczyk, and I. Ercan, Real-space time
dynamics in waveguide QED: Bound states and single-
photon-pulse scattering, Quantum 3, 213 (2019).

[36] C. Gonzalez-Ballestero, F. J. García-Vidal, and E. Moreno,
Non-Markovian effects in waveguide-mediated entangle-
ment, New J. Phys. 15, 073015 (2013).

[37] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[38] M. Gross and S. Haroche, Superradiance: An essay on the
theory of collective spontaneous emission, Phys. Rep. 93,
301 (1982).

[39] N. E. Rehler and J. H. Eberly, Superradiance, Phys. Rev. A
3, 1735 (1971).

[40] J. H. Eberly, Superradiance revisited, Am. J. Phys. 40, 1374
(1972).

[41] N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S.
Feld, Observation of Dicke Superradiance in Optically
Pumped HF Gas, Phys. Rev. Lett. 30, 309 (1973).

[42] M. Gross, C. Fabre, P. Pillet, and S. Haroche, Observation of
Near-Infrared Dicke Superradiance on Cascading Transi-
tions in Atomic Sodium, Phys. Rev. Lett. 36, 1035 (1976).

[43] D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, and S.
Liberman, Experimental Evidence for Subradiance, Phys.
Rev. Lett. 54, 1917 (1985).

[44] R. G. DeVoe and R. G. Brewer, Observation of Superradiant
and Subradiant Spontaneous Emission of Two Trapped
Ions, Phys. Rev. Lett. 76, 2049 (1996).

[45] M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G.
Bacher, T. Passow, and D. Hommel, Superradiance of
quantum dots, Nat. Phys. 3, 106 (2007).

[46] J. A. Mlynek, A. A. Abdumalikov, C. Eichler, and A.
Wallraff, Observation of Dicke superradiance for two
artificial atoms in a cavity with high decay rate, Nat.
Commun. 5, 5186 (2014).

[47] P. Solano, P. Barberis-Blostein, F. K. Fatemi, L. A. Orozco,
and S. L. Rolston, Super-radiance reveals infinite-range
dipole interactions through a nanofiber, Nat. Commun. 8,
1857 (2017).

[48] J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P.
Leavitt, and E. Waks, Super-radiant emission from quantum
dots in a nanophotonic waveguide, Nano Lett. 18, 4734
(2018).

[49] L. Chen, P. Wang, Z. Meng, L. Huang, H. Cai, D.-W. Wang,
S.-Y. Zhu, and J. Zhang, Experimental Observation of One-
Dimensional Superradiance Lattices in Ultracold Atoms,
Phys. Rev. Lett. 120, 193601 (2018).

[50] P. W. Milonni and P. L. Knight, Retardation in the resonant
interaction of two identical atoms, Phys. Rev. A 10, 1096
(1974).

[51] F. T. Arecchi and E. Courtens, Cooperative phenomena in
resonant electromagnetic propagation, Phys. Rev. A 2, 1730
(1970).

[52] Z. Ficek and R. Tanaś, Entangled states and collective
nonclassical effects in two-atom systems, Phys. Rep. 372,
369 (2002).

[53] Our interaction Hamiltonian is expressed in terms of
symmetrically ordered atomic and field observables. With
this choice of ordering, spontaneous emission can be
physically interpreted as resulting equally from both radi-
ation reaction and vacuum fluctuations [54,55].

[54] P. W. Milonni, J. R. Ackerhalt, and W. A. Smith, Interpre-
tation of Radiative Corrections in Spontaneous Emission,
Phys. Rev. Lett. 31, 958 (1973).

[55] P. W. Milonni and W. A. Smith, Radiation reaction and
vacuum fluctuations in spontaneous emission, Phys. Rev. A
11, 814 (1975).

[56] The coupling gðωÞ between the emitters and the waveguide
includes the details of the emitter waveguide interactions
such as overlap integrals between guided modes of the
waveguide and emitter eigenstates [57–60].

[57] V. V. Klimov and M. Ducloy, Spontaneous emission rate of
an excited atom placed near a nanofiber, Phys. Rev. A 69,
013812 (2004).

[58] V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M.
Morinaga, Atom trapping and guiding with a subwave-
length-diameter optical fiber, Phys. Rev. A 70, 011401(R)
(2004).

[59] F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, Field
intensity distributions and polarization orientations in a
vacuum-clad subwavelength-diameter optical fiber, Opt.
Commun. 242, 445 (2004).

[60] P. Solano, J. A. Grover, Y. Xu, P. Barberis-Blostein, J. N.
Munday, L. A. Orozco, W. D. Phillips, and S. L. Rolston,
Alignment-dependent decay rate of an atomic dipole
near an optical nanofiber, Phys. Rev. A 99, 013822
(2019).

PHYSICAL REVIEW LETTERS 124, 043603 (2020)

043603-6

https://doi.org/10.1103/PhysRevA.90.012113
https://doi.org/10.1103/PhysRevA.90.012113
https://doi.org/10.1103/PhysRevLett.110.013601
https://doi.org/10.1103/PhysRevLett.110.013601
https://doi.org/10.1103/PhysRevA.35.5081
https://doi.org/10.1103/PhysRevA.35.5081
https://doi.org/10.1103/PhysRevA.66.063801
https://doi.org/10.1103/PhysRevA.66.063801
https://doi.org/10.1103/PhysRevA.93.023808
https://doi.org/10.1088/2058-9565/aa7f03
https://doi.org/10.1088/2058-9565/aa7f03
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1103/PhysRevA.96.023842
https://doi.org/10.1103/PhysRevLett.122.073601
https://doi.org/10.1103/PhysRevLett.122.073601
https://doi.org/10.1103/PhysRevA.100.023834
https://doi.org/10.22331/q-2019-12-09-213
https://doi.org/10.1088/1367-2630/15/7/073015
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1103/PhysRevA.3.1735
https://doi.org/10.1103/PhysRevA.3.1735
https://doi.org/10.1119/1.1986858
https://doi.org/10.1119/1.1986858
https://doi.org/10.1103/PhysRevLett.30.309
https://doi.org/10.1103/PhysRevLett.36.1035
https://doi.org/10.1103/PhysRevLett.54.1917
https://doi.org/10.1103/PhysRevLett.54.1917
https://doi.org/10.1103/PhysRevLett.76.2049
https://doi.org/10.1038/nphys494
https://doi.org/10.1038/ncomms6186
https://doi.org/10.1038/ncomms6186
https://doi.org/10.1038/s41467-017-01994-3
https://doi.org/10.1038/s41467-017-01994-3
https://doi.org/10.1021/acs.nanolett.8b01133
https://doi.org/10.1021/acs.nanolett.8b01133
https://doi.org/10.1103/PhysRevLett.120.193601
https://doi.org/10.1103/PhysRevA.10.1096
https://doi.org/10.1103/PhysRevA.10.1096
https://doi.org/10.1103/PhysRevA.2.1730
https://doi.org/10.1103/PhysRevA.2.1730
https://doi.org/10.1016/S0370-1573(02)00368-X
https://doi.org/10.1016/S0370-1573(02)00368-X
https://doi.org/10.1103/PhysRevLett.31.958
https://doi.org/10.1103/PhysRevA.11.814
https://doi.org/10.1103/PhysRevA.11.814
https://doi.org/10.1103/PhysRevA.69.013812
https://doi.org/10.1103/PhysRevA.69.013812
https://doi.org/10.1103/PhysRevA.70.011401
https://doi.org/10.1103/PhysRevA.70.011401
https://doi.org/10.1016/j.optcom.2004.08.044
https://doi.org/10.1016/j.optcom.2004.08.044
https://doi.org/10.1103/PhysRevA.99.013822
https://doi.org/10.1103/PhysRevA.99.013822


[61] F. M. Asl and A. G. Ulsoy, Analysis of a system of linear
delay differential equations, J. Dyn. Syst., Meas., Control
125, 215 (2003).

[62] Note that for ϕp ¼ ð2pþ 1Þπ the expressions of the super-
radiant and subradiant coefficients are exchanged. In general
the system evolution is set by both the atomic initial state
and the phase of the EM field acquired upon propagation.

[63] In the limiting case d → 0 and β ¼ 1, we obtain

c̃supðsÞ → f1=½ ffiffiffi
2

p ðsþ γÞ�g, i.e., csupðtÞ → ð1= ffiffiffi
2

p Þe−γt,
and c̃subðsÞ → �ð1= ffiffiffi

2
p

sÞ, i.e., csubðtÞ → �ð1= ffiffiffi
2

p Þ, corre-
sponding to the limit of usual Dicke superradiance and
subradiance when the emitters are close to each other.
Similarly, if the emitters are far apart, in the limit d → ∞
one obtains csup;subðtÞ ¼ ð1= ffiffiffi

2
p Þe−γt=2, as both the emitters

emit independently.
[64] M. Cray, M.-L. Shih, and P. W. Milonni, Stimulated

emission, absorption, and interference, Am. J. Phys. 50,
1016 (1982).

[65] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey,
and D. E. Knuth, On the Lambert-W function, Adv.
Comput. Math. 5, 329 (1996).

[66] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.124.043603 which
contains the details on a solution to the atomic dynamics
in terms of Lambert-W functions, an alternative solution in
terms of wavepacket oscillations, derivation of the field
intensity expressions, measure of non-Markovianity, the
dynamics of emitter-field correlations, and a summary of
experimental feasibility in different platforms, which in-
cludes Refs. [67–72].

[67] B. Ohayon and G. Ron, New approaches in designing a
Zeeman Slower, J. Instrum. 8, P02016 (2013).

[68] E. Floratos, G. Georgiou, and G. Linardopoulos, Large-spin
expansions of GKP strings, J. High Energy Phys. 03 (2014)
0180.

[69] K. Sinha, B. P. Venkatesh, and P. Meystre, Collective Effects
in Casimir-Polder Forces, Phys. Rev. Lett. 121, 183605
(2018).

[70] S. Fuchs and S. Y. Buhmann, Purcell-Dicke enhancement of
the Casimir-Polder potential, Eur. Phys. Lett. 124, 34003
(2018).

[71] T. Chanda and S. Bhattacharya, Delineating incoherent non-
Markovian dynamics using quantum coherence, Ann. Phys.
(Amsterdam) 366, 1 (2016).

[72] S. Bose and V. Vedral, Mixedness and teleportation, Phys.
Rev. A 61, 040101(R) (2000).

[73] K. Sinha, P. Meystre, and P. Solano, Non-Markovian
dynamics of collective atomic states coupled to a wave-
guide, Proc. SPIE 11091, 110910O (2019).

[74] P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K.
Fatemi, L. A. Orozco, and S. L. Rolston, Optical nanofibers:
A new platform for quantum optics, Adv. At. Mol. Opt.
Phys. 66, 439 (2017).

[75] We note that for the subradiant state with β ¼ 1 when a BIC
state is formed, there is a non-zero steady state atomic
population in addition to the excitation in field modes. We
exclude that special case from consideration here. We have
also ignored here the possibility that the emission into
external modes can exhibit cooperative effects.

[76] G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P.
Rabl, and J. Schmiedmayer, Quantum technologies with
hybrid systems, Proc. Natl. Acad. Sci. U.S.A. 112, 3866
(2015).

[77] A. Johnson, M. Blaha, A. E. Ulanov, A. Rauschenbeutel, P.
Schneeweiss, and J. Volz, Observation of Multimode Strong
Coupling of Cold Atoms to a 30-m Long Optical Resonator,
Phys. Rev. Lett. 123, 243602 (2019).
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