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We study the dynamics of lattice models of quantum spins one-half, driven by a coherent drive and
subject to dissipation. Generically the mean-field limit of these models manifests multistable parameter
regions of coexisting steady states with different magnetizations. We introduce an efficient scheme
accounting for the corrections to mean field by correlations at leading order, and benchmark this scheme
using high-precision numerics based on matrix-product operators in one- and two-dimensional lattices.
Correlations are shown to wash the mean-field bistability in dimension one, leading to a unique steady
state. In dimension two and higher, we find that multistability is again possible, provided the
thermodynamic limit of an infinitely large lattice is taken first with respect to the longtime limit. Variation
of the system parameters results in jumps between the different steady states, each showing a critical
slowing down in the convergence of perturbations towards the steady state. Experiments with trapped ions
can realize the model and possibly answer open questions in the nonequilibrium many-body dynamics of
these quantum systems, beyond the system sizes accessible to present numerics.
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Coherent control over quantum single- and few-body
dynamics is continuously improving, spanning atomic,
optical, and solid-state systems [1–3]. An ongoing effort
is focused on assembling many individually tunable sys-
tems and studying the ensuing many-body dynamics. A
significant challenge lies in realizing unitary dynamics,
however, the inevitable presence of dissipative processes
can be utilized in different scenarios, such as by reservoir
engineering [4]. Coherent time-periodic driving is a useful
tool [5], and rich dynamics are observed with systems of
strong light-matter interactions at the interface between
quantum optics and condensed matter [6–22]. Systems with
a competition between interactions, nonlinearity, coherent
external driving and dissipative dynamics include arrays
of coupled circuit quantum electrodynamic units [23,24],
cold atoms [25], and ions [26]. Critical phenomena and
dissipative phase transitions in these open systems often
come with new properties and novel dynamic universality
classes [27–32].
The state of an open quantum system is defined by a

density matrix ρ, with the dynamics often treated using a
Lindblad master equation, describing a memoryless bath,
and the time evolution generated by the Liouvillian super-
operator acting on ρ [33]. The theoretical tools available
for open quantum many-body systems are relatively lim-
ited. For driven-dissipative lattice models the mean-field
(MF) approach is often employed, with ρ approximated as a
product of single-site density matrices. The dynamics of

local observables are described by nonlinear equations,
studied, e.g., for lattice Rydberg atoms [34–39], coupled
quantum-electrodynamics cavities and circuits [20,40,41],
nonlinear photonic models [42,43], and spin lattices
[44,45]. A key feature of the MF phase diagrams are
multistable parameter regions where two or more steady
states coexist.
However, the Lindblad equation converges in general to

a unique steady state in finite systems [46,47], making the
status of the MF approximation unclear. Indeed, significant
deviations from MF have been found using approximation
schemes accounting for quantum correlations [48–50], and
also using exact numerical methods (quantum trajectories
[51] and matrix product operators (MPO) [52]). In one-
dimensional (1D) lattices with nearest-neighbor (NN)
interactions, the MF bistability is found to be replaced
by a crossover driven by large quantum fluctuations
[42,48,53,54]. In contrast, in certain 2D NN models, MF
bistability has been found by approximate methods to be
replaced by a first-order phase transition between two
states, for nonlinear bosons using a truncated Wigner
approximation [42,54], and for Ising spins using a varia-
tional ansatz accounting for short-range correlations [48], a
cluster MF approach [55], and two-dimensional tensor
network states [56]. In a parameter region around the
jump, the convergence towards the steady state slows
down [48,54], a phenomenon related to a gap closing in
the spectrum of the Liouvillian [47,57,58].
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In this Letter, we study a driven-dissipative model of
spins one-half with XY (flip-flop) interactions in the
presence of coherent drive and dissipation, using a combi-
nation of MPO simulations and an approximation scheme
which accounts for quantum fluctuations beyond mean
field (MFQF). For one-dimensional lattices we confirm the
existence of a unique steady state in the thermodynamic
limit. As our main result, we find that in dimension two and
higher multistability (in particular, bistability) is again
possible, with jumps between the different steady states
accompanied by a critical slowing down, provided that the
thermodynamic limit of an infinitely large lattice is taken
first with respect to the longtime limit. We argue that this
order of limits is physically plausible, and we link the
bistability to the fact that for finite size and time the
probability distribution of relevant observables develops a
strong bimodal structure. Depending on the order of limits,
bimodality leads either to a first-order dissipative phase
transition (as usually discussed when the longtime limit is
taken first), or to a bistable regime. We thus provide a
theoretical scenario reconciling our results with the liter-
ature cited above, and finding similar dynamics in a model
with Ising interactions (see below and [59]) indicates the
generality of our results. We suggest that in an experimental
platform based on trapped-ion quantum simulators, such a
question can be addressed.
Model.—We consider a quantum system with N sites

R ∈ ZD on a hypercubic lattice inD spatial dimensions, for
which the connectivity is Z ¼ 2D. The master equation for
ρ is defined using the Liouvillian L̂,

∂tρ ¼ L̂½ρ�≡ −i½H; ρ� þD½ρ�; ℏ ¼ 1: ð1Þ

The Hamiltonian describing Rabi oscillations of two-level
systems with a drive detuned by Δ from the resonant
transition frequency and a Rabi frequency Ω, is given in a
frame rotating with the drive by

H ¼
X

R

�
Δ
2
σzR þΩσxR

�
−

X

hR;R0i
JðσþRσ−R0 þ H:c:Þ; ð2Þ

where the second sum extends over all pairs of NN sites,
describing hopping with amplitude J, with spin-1

2
operators

(Pauli matrices) σaR, a ¼ fx; y; zg, and σ�R ¼ ðσxR � iσyRÞ=2.
For spin losses occurring independently at each site with
rate Γ ¼ 1 (which fixes the frequency and time units),

D½ρ� ¼
X

R

�
σ−Rρσ

þ
R −

1

2
ðσþRσ−Rρþ ρσþRσ

−
RÞ
�
: ð3Þ

Aside from translation invariance, this model has no
manifest microscopic symmetries. Its MF phase diagram
displays bistability [45,53] in a region of parameters that
terminates at a second order point where an emerging Z2

symmetry spontaneously breaks [36]. In 1D the steady state
is unique as obtained by MPO simulations [53]. Here we
focus on higher dimensions, which we find to manifest
bistability in the thermodynamic limit.
Dynamics of observables.—From the master equation

one can derive a hierarchy of equations of motion for n-
point expectation values of the form hσaR1

σbR2
� � � σcRn

i≡
trfρσaR1

σbR2
� � � σcRn

g, which depend on the value of corre-
lators at the next order, nþ 1. Assuming a translationally
invariant density matrix, we define the uniform vector
mean magnetization, μaðtÞ ¼ hð1=NÞPR σ

a
Ri ¼ hσaRi, and

its equations of motion

∂tμx ¼ −JZ½μyμz þ ηyzð1Þ� − Δμy − μx=2; ð4Þ
∂tμy ¼ JZ½μxμz þ ηxzð1Þ� − 2Ωμz þ Δμx − μy=2; ð5Þ

∂tμz ¼ 2Ωμy − ð1þ μzÞ: ð6Þ

with the connected two-point correlation functions,

ηabðR;R0; tÞ≡ hðσaR − μaÞðσbR0 − μbÞi
¼ hσaRσbR0 i − μaμb; R ≠ R0; ð7Þ

and setting R0 ¼ 0 using the translation invariance, ηabð1Þ
is the correlator at a NN of the origin.
Equations (4)–(6) are exact. The limit η → 0 reduces ρ to a

product of identical on-site states, leading to the MF
equations, whose steady state and dynamics are studied
in detail in [60]. We present an approximate scheme going
beyond MF, formally based on an expansion in 1=Z (with
a related approach in [49]). Neglecting the connected
three-point correlators hðσaR−μaÞðσbR0−μbÞðσcR00−μcÞi≈0,
allows us to derive (see [59]) coupled equations for
ηabðR; tÞ, which we solve numerically together with their
feedback into Eqs. (4)–(6). Since the short-range correlators
ηabð1Þ appearing in Eqs. (4)–(6) are dynamically coupled to
all distances in the lattice, the MFQF method accounts for
the spatial structure of correlation functions. The simula-
tions have been verified to converge as a function of N, and
hence we can approximate the system dynamics as a
function of time with the limit N → ∞ taken first.
Correlations wash away bistability in 1D.—We start our

analysis with numerically exact MPO calculations of large
lattices in 1D. The density matrix ρ can be considered as a
pure state in an enlarged Hilbert space with four states per
site [61], allowing us to solve the Lindblad evolution using
a method formally similar to pure state unitary evolution
encoded using well-established matrix product states
(see [62,63], and references therein). We evolve ρðtÞ in
a 1D chain with open boundary conditions (translation
invariance is not enforced), using an MPO algorithm
[52,61,64], with an implementation based on the iTensor
library [65], a Trotter decomposition of order four [63,66],
and bond dimension χ ¼ 300. With up to 200 spins we

PHYSICAL REVIEW LETTERS 124, 043601 (2020)

043601-2



checked that observables measured in the central region of
the chain had negligible finite-size effects and truncation
errors at the scale of the plots, allowing us to obtain their
steady-state bulk values corresponding to the thermody-
namic limit.
Figure 1(a) shows the x component of the steady-state

magnetization, μ⃗S ≡ limt→∞μ⃗ðtÞ, in 1D, for JZ ¼ 4 as a
function ofΔ. In MF, μ⃗S is unique except for 1.3≲ Δ≲ 1.9,
where there are two coexisting stable solutions in addition to
an unstable solution.At the presence of quantumcorrelations
(inMPOandMFQF), themagnetizationdeparts significantly
from the MF prediction, with a crossover between the two
limiting regimes, in the range 1.5≲ Δ≲ 5. We define the
inverse correlation lengths λab by fitting the six correlation
functions to ηabðRÞ ∼ expf−λabRg. For simplicity, we
present in Fig. 1(b) only one correlation length, and
Fig. 1(c) shows the corresponding total correlationmeasured
by Σab ¼

P
R ηabðRÞ. The spatial structure of the two-point

correlation undergoes a sharp change within the crossover
region, from relatively small but widely extended correla-
tions for low Δ, to much larger but very short-ranged
correlations, for high Δ. A separate analysis of the correla-
tions shows that at the same time, the correlations change
nature from periodic modulations (spin density-wave char-
acter), to being overdamped in space.

As Fig. 1 shows, the MFQF approximation correctly
captures the uniqueness of the steady state and the disap-
pearance of bistability in 1D. On both sides of the crossover
region, the results are quantitatively accurate. In its center, the
approximation reaches too large values for ηabðRÞ and the
correlation length. More generally, we find that as J is
increased in 1D, the MFQF approach loses its accuracy (for
parameters of strong correlations), plausibly because of the
role of higher-order correlation functions that are neglected,
which can lead at much larger J to the breakdown of the
approximation. However, the MFQF approach is easy to
generalize to higher dimensions, and quantitatively accurate
in regions with moderate correlations.
Bistability in higher dimensions.—Figure 2(a) shows the

results of simulations with large 2D and 3D lattices, for
JZ ¼ 4. The MFQF theory, that allows simulating large
lattices (with N → ∞), is compared with 2D-MPO calcu-
lations, limited to a finite-size system, for which, as in 1D,
ρ is encoded as a product of matrices. The matrix product
runs over a snakelike path visiting all the sites of a cylinder
of length Lx ¼ 12 and perimeter Ly ¼ 4 (see [59]). Such an
approach has been applied in ground-state calculations of
2D models [67], but we are not aware of previous 2D-MPO
Lindblad calculations. For Δ≲ 1.5 and Δ≳ 2.5 the agree-
ment between MPO and MFQF is almost perfect, giving a
nontrivial check of the ability of MFQF to capture
significant correlation effects (that result in μ⃗ strongly

FIG. 1. (a) Mean steady-state x magnetization μSx as a function
of Δ for Ω ¼ 0.5 and JZ ¼ 4, on a 1D lattice. The mean-field
(MF) limit manifests bistability, with three coexisting solutions,
two of which—those on the branches coming from the limits of
Δ → f0;∞g, are stable. Two black hexagrams mark the points
where the unstable branch meets each of the two stable ones. An
exact numerical treatment using matrix product operators (MPO)
shows a crossover within a range of Δ shifted from the MF
bistability region. An approximation incorporating quantum
fluctuations at leading order (MFQF) follows approximately
the MPO result in a large range of parameters. (b) The correlation
length λxx defined by fitting ηxx ∼ expf−λxxRg, and (c) the total
correlation Σxx ¼

P
R ηxxðRÞ, calculated in MPO and MFQF,

showing that the latter approximation is capable of capturing the
spatial structure and relative magnitudes of two-point correlations
in the lattice.

FIG. 2. (a) Mean steady-state x magnetization μSx in the MFQF
N → ∞ approximation in 2D–3D, together with the MF limit and
2D-MPO results (for a 12 × 4 cylinder). The parameters are as in
Fig. 1, with JZ kept fixed by varying J with the dimension. For
D ≥ 2 MFQF predicts multistability, with two stable branches
approaching the MF branches in an increasingly larger parameter
region asD is increased. The dotted black lines indicate the edges
of the 2D bistable region. The simulations were run with lattices
of up to 2002 and 403 sites and periodic boundary conditions.
(b) The total correlation in 2D, showing a difference of up to 2
orders of magnitude in the bistable phases. (c) The rate of
convergence to the 2D steady states, fitted to an exponential form
∼e−κt, showing a critical slowing down of the dynamics as κ → 0
at the two bistability edges.
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departing from MF). The computational cost of guarantee-
ing a high accuracy in 2D-MPO calculation is exponential
in Ly (see [59]), limiting the present MPO calculations to
relatively small systems, which cannot show bistability
(and a possible discontinuity would also be smeared out).
As our main result, using MFQF we find in 2D two

stable μ⃗S branches, that in 3D extend over larger ranges of
Δ, converging towards the MF bistability region and
magnetization values. Figure 2(b) shows that Σxx increases
by 2 orders of magnitude for one of the bistable states, and
Fig. 2(c) shows the asymptotic relaxation rate associated
with the convergence to μ⃗S. It is obtained by fitting ∂tμ⃗

2 ∼
e−κt at large times (t ∼ 100). The fact that κ → 0 at the
branch edges in 2D indicates a critical slowing down when
approaching the end of the bistability region in the phase
that is about to disappear, leading to a discontinuous jump.
The MFQF approach does, however, not always predict
bistability in 2D. Replacing each hopping term in Eq. (2) by
the Ising coupling Jzσ

z
Rσ

z
R0 , we find a smooth crossover for

moderate Jz (as obtained using cluster mean field [55]),
and a small bistability region for stronger couplings (again
as in [55]); see [59].
Bistability, Liouvillian spectrum and bimodality.—We

henceforth return to the question raised in the introduction:
how to reconcile the uniqueness of the steady state in
finite systems, with bistability seen when taking first the
thermodynamic limit of infinite size, and then the long-
time limit?
Considering the Liouvillian L̂ of Eq. (1), the unique

thermodynamic steady state corresponds to ρss ¼
limN→∞ limt→∞ ρðtÞ, which is independent of the initial
conditions, and is an eigenstate of L̂ at any N, L̂ρss ¼ 0.
Assuming bistability, we define ρ1 and ρ2 as the two distinct
density matrices obtained from limt→∞ limN→∞ ρðtÞ, which
depend on the initial conditions. For N large but finite the
bistability should be replaced by long-livedmetastable states,
in which case ρ1 and ρ2 are defined at times t ≫ 1=Γ, but
small compared to the lifetime of these metastable states. As
in themodel studied here, these two states have different local
properties: a local observable [i.e., sum of local terms, e.g.,
Mx ¼ ð1=NÞPR σ

x
R] has a probability distribution P1ðmÞ

with a single peak centred aroundm1 in ρ1, and a distribution
P2ðmÞ peaked around m2 (≠ m1) in ρ2. At the same time,
metastability implies some relaxation time diverging
with N, and the spectrum of L̂ must have at least one
nonzero eigenvalue λE with a vanishingly small real part,
limN→∞ ReðλEÞ ¼ 0, other eigenvalues being separated by a
gap OðΓÞ [58,68]. We assume for simplicity that L̂ has a
unique such small eigenvalue (therefore real), and denote by
ρE the associated eigenstate (or eigenmatrix). ρss and ρE are
the eigenstates from which all long-lived states can be
constructed, since for t much larger than 1=Γ we can ignore
higher “excited” eigenstates. So, for ρ1 and ρ2 to be long
lived, they must be linear combinations of ρss and ρE. As
physical states have a trace equal to 1, and since Trρss ¼ 1

and TrρE ¼ 0, there must exist two distinct scalars a1 and a2
such that ρi¼ρssþaiρEwith i¼1, 2 [38,47,58,68]. Inverting
these relations we get ρss¼ða2ρ1−a1ρ2Þ=ða2−a1Þ. So, if a1
and a2 are both nonzero (which may not be always the case)
ρss is a “cat state” (with correlation functions extending over
the system size), being a linear combination of two uniform
physical states with different local properties. In ρss, the
probability distribution Pss ¼ ða2P1 − a1P2Þ=ða2 − a1Þ of
a local observable is bimodal, peaked around the two mean
values m1;2 realized in the states ρi¼1;2.
Using exact diagonalization on small systems we have

computed such distributions for the fully connected version
of the present XY model, which is bistable in the thermo-
dynamic limit (where MF becomes exact), and for the 1D
and 2D cases. We find ([59]), that the magnetization
becomes bimodal in parts of the MF bistability region for
the fully connected and 2D cases, whereas it stays mono-
modal in 1D. The scaling with N of the bimodal peaks is
beyond the scope of the current work, however, the mean
value of an observable computed with ρss may become
discontinuous as N → ∞ at some value of the parameter
[42,47,54,69]. This could correspond, in the discussion
above, to smoothly varying ρi¼1;2 but discontinuous jumps
of a1 and a2. Hence, a unique steady state with a discon-
tinuous jump is a priori compatible with bistability and
hysteresis and, in the present scenario, finding one or the
other in a theory calculation is a matter of order of limits.
Moreover, since the support of P1 has essentially no

overlap with that of P2 (for a large enough system), any
density matrix which is not a convex combination of ρ1 and
ρ2 would give some (unphysical) negative probability
density. This means that all physical long-lived states are
convex combinations of the monomodal states ρi, and the
latter thus coincide with the extreme states of [58]. The
above discussion therefore connects our results both with
the theories of first-order phase transitions, and the theory
based on the extreme metastable states. The lifetimes of the
many-bodymetastable stateswould divergewithN, plausibly
∝ eN , and for large enough N, exceed the time accessible in
numerical or experimental realizations.We conjecture that an
initial state with a finite correlation length will lead, in the
time window 1=Γ ≪ t ≪ 1=jλEj, to one of the two mono-
modal states ρi, and not to an arbitrary combination of the
two.A heuristic argument is given in [59]. A product state is a
natural reproducible initial state in an experiment, allowing to
explore the metastability. As a parameter is swept back and
forth across the bistability region in an experimental setup,
observables will show hysteresis loops—unless the sweep is
unrealistically slow (∝e−N).
Experimental feasibility.—In addition to possible real-

izations with circuit-QED arrays [53], driven-dissipative
spin models can be realized in current experiments with a
few tens to a few hundreds of trapped ions. Ising and XY
interactions can be implemented by laser beams inducing
spin-motion coupling along one or two orthogonal
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directions [70–72], with an additional laser for the on-site
Hamiltonian. As recently demonstrated experimentally, the
interaction can be varied from being almost independent of
distance to a dipolar power law, and therefore short range in
1D [73,74] and 2D lattices [26]. The interaction strength in
these works is of the order of J=ℏ ∼ 104 s−1, 1 to 2 orders
of magnitude larger than the qubit dephasing rates, and the
rate of spin-flip processes in Eq. (3) can be potentially
controlled as well.
Conclusion.—Studying lattices of driven-dissipative

interacting spins using state-of-the-art 1D MPO simula-
tions, for the parameters presented here and in further
parameter regimes [60], we have found no phase transition
but a crossover between two regimes with different
characteristics. On the other hand, using a new approach
that accounts for the leading-order lattice correlations and
their feedback onto the mean magnetization, bistability
appears to be possible in driven-dissipative quantum
systems already in 2D. Thus, the present exact and
approximate calculations suggest that D ¼ 2 is a lower
critical dimension for bistability in this problem. This
conclusion is consistent with works done in the context
of Rydberg atoms on related models [36], pointing toward a
model A dynamic universality class (whose lower critical
dimension is known to be two) for the second order phase
transition at the ending point of the bistability regime. This
implies that in one dimension fluctuations destroy the
critical point and with it the entire bistability region, in
line with our results.
The question of the existence of a lower critical dimen-

sion for bistability, bimodality, and hysteresis and the
accompanied dissipative phase transitions in this model
can be directly addressed experimentally. If a definite
answer is found, it would constitute the first demonstration
of deciding a question currently intractable classically, by a
controlled quantum simulation. It could ascertain the status
of the mean-field approximation in these systems, and shed
light on the differences between equilibrium and non-
equilibrium phase transitions.
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