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Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezer arrays
offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-
dependent coupling between Rydberg atoms and local oscillator modes gives rise to two- and three-body
interactions which are controllable through the strength of the local confinement. This approach even
permits the cancellation of two-body terms such that three-body interactions become dominant. We analyze
the structure of these interactions on two-dimensional bipartite lattice geometries and explore the impact of
three-body interactions on system ground state on a square lattice. Focusing specifically on a system of
87Rb atoms, we show that the effects of the multibody interactions can be maximized via a tailored dressed
potential within a trapping frequency range of the order of a few hundred kilohertz and for temperatures
corresponding to a > 90% occupation of the atomic vibrational ground state. These parameters, as well as
the multibody induced timescales, are compatible with state-of-the-art arrays of optical tweezers. Our work
shows a highly versatile handle for engineering multibody interactions of quantum many-body systems in
most recent manifestations on Rydberg lattice quantum simulators.
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Introduction.—In the past yearsRydberg atoms [1–3] held
in optical tweezer arrays have emerged as a new platform for
the implementation of quantum simulators and, potentially,
also quantum computers [4–10]. One- [6], two- [11], and
three-dimensional [12] arrays containing hundreds of qubits
are in principle achievable and thewide tunability ofRydberg
atoms grants high flexibility for the implementation of a
whole host of quantum many-body spin models. The
physical dynamics of these quantum simulators takes place
in the electronic degrees of freedom (d.o.f.) which mimic a
(fictitious) spin particle. Effective magnetic fields and
interactions are achieved via light shifts effectuated by
external laser fields and the electrostatic dipolar interaction
between Rydberg states. Additional tuning with electric [13]
and magnetic fields [14] permits the realization of exotic
interactions, allowing for the study of ring-exchange
Hamiltonians [15–18], frustrated-spin models [19–21], or
crystallization phenomena [22–24]. Within this context, in
the past decade systems with tunable two- and three-body
interactions [25–29] have attracted a lot of attention since the
latter are responsible for the emergence of many exotic
quantum states of matter, ranging from topological phases
[30,31] to spin liquids [32,33].
In this work we put forward a new mechanism for

engineering nonbinary interactions in Rydberg tweezer
arrays [6,9,34–43]. Here, each atom is held in place by a
strong local harmonic potential. The simultaneous excitation

of neighboring atoms to the Rydberg state gives rise to a
mechanical force that couples the electronic d.o.f. to the local
phonon modes. We show that this coupling gives rise to
effective spin-spin interactions between excited atoms.
Similar mechanisms in which effective interparticle inter-
actions arise as a consequence of the coupling with an extra
d.o.f. have been extensively studied in condensed matter
systems. Here, well-known examples include the electron-
electron interaction mediated by lattice phonons in metals
[44] and the indirect spin-spin couplings [45] due to the
Ruderman-Kittel-Kasuya-Yosida [46], superexchange [47],
andDzyaloshinskii-Moriyamechanisms [48]. In these cases,
integrating out the extra d.o.f. typically results in two-body
effective interactions between the remaining d.o.f. Crucially,
in our system, since spins and phonons are coupled via pairs
of Rydberg atoms, not only two-body but also three-body
effective interactions arise.We analyze in depth the interplay
between the various effective couplings in the case of two-
dimensional bipartite lattice geometries, demonstrating that
regimes dominated by three-body interactions can be
achieved. Our results show that the multibody interactions
arising from the electron-phonon coupling are highly tunable
and can drive nontrivial phase transitions in the ground state
of a Rydberg spin system. By tuning the local harmonic
potentials, we show that checkerboard, striped, and clustered
phases occur as well as signatures of frustration phenomena.
Our work is directly relevant for recent developments on the
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domain of quantum simulation with Rydberg tweezer arrays
where it highlights a so far unanticipated mechanism for
experimentally realizing exotic interactions.
2D model.—Weconsider a 2D lattice ofN Rydberg atoms

in the x–y plane, whose sites are labeled by k ¼ ðkx; kyÞ. The
electronic d.o.f. is modeled as an effective two-level system
(with j↓i and j↑i denoting the ground state and the Rydberg
excited state, respectively) [3,40]. The two levels are
coupled by a laser with Rabi frequency Ω and detuning
Δ [see Fig. 1(a)]. Each of the atoms, with massm, is trapped
in a strong three-dimensional harmonic potential, charac-
terized by trapping frequencies ωμ along the directions
μ ¼ x, y, z. The atomicmotion inside the confining potential
can then be described in terms of the bosonic operators bk;μ.
The Hamiltonian describing the single-particle dynamics is

Hsp ¼
X

μ¼x;y;z

X
k

ℏωμb
†
k;μbk;μ þ

X
k

½Ωσxk þ Δnk�: ð1Þ

Here, nk ¼ ð1þ σzkÞ=2 and σμk are the Rydberg number
operator and Pauli matrices acting on the atom at site k and
position rk ¼ ðxk; yk; zkÞ, respectively. Any two atoms at
lattice positions rk and rm, if excited to the Rydberg state,
interact through the two-body potential Vðrk; rmÞ, which
depends on the interparticle distance jrk − rmj [1,3,7]. The
overall Hamiltonian is therefore H ¼ Hsp þHint, with

Hint ¼
X
k;m

0Vðrk; rmÞnknm; ð2Þ

where the prime in the sum implies that terms with equal
indices are excluded. Note that in Eq. (1) we have assumed
the same trapping frequencies ωμ for atoms in the ground

and in the Rydberg state. This “magic” condition can be
realized inRydberg tweezer arrays throughbottle beam traps
[49]. Furthermore, a small frequency mismatch between the
two states does not affect our central results, as discussed in
the Supplemental Material (SM) [50].
At low temperature each atom oscillates around the

minimum of its local potential r0k, and its position can thus
be written as rk ¼ r0k þ δrk, with δrk;μ ¼ lμðb†k;μ þ bk;μÞ
being the atomic displacements from equilibrium. Here,
l ¼ ðlx;ly;lzÞ is the vector of the characteristic lengths
associated with the harmonic trapping potentials in the

three spatial directions with lμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏð2mωμÞ−1

q
. As a

consequence, the two-body interaction depends on the
displacements: Vðr0k þ δrk; r0m þ δrmÞnknm. Clearly, this
implies that a coupling between electronic and vibrational
d.o.f. emerges.
This situation is reminiscent of a mechanism for creating

long-range spin models in arrays of trapped ions [55–57].
In that case, the interplay of long-range Coulomb repulsion
between the ions and laser induced spin-dependent forces
results in an effective long-range spin-spin interaction and
allows us to simulate a rich variety of quantum systems.
However, in contrast to the ions, Eq. (2) implies that in our
setup the potential Vðrk; rmÞ couples electronic and vibra-
tional d.o.f. only when two atoms are excited, which is the
origin of many-body spin interaction terms.
To demonstrate this, we focus on the strong confinement

regime, inwhich thedisplacements δrk aremuch smaller than
interatomic distances. Indeed, this represents the typical
situation in Rydberg quantum simulators [6,9,38,39]. By
expanding the potential in Eq. (2) in a Taylor series to the first
order in δr, the atom-atom interaction Hamiltonian acquires
the form

Hint ¼
X
k;m

0
�
V0
k;m þ

X
μ

Wk;m;μðb†k;μ þ bk;μÞ
�
nknm; ð3Þ

where V0
k;m ≡ Vðr0k; r0mÞ and

Wk;m;μ ¼ 2lμ½∇rkVðrk; r0mÞjrk¼r0k
�μ: ð4Þ

Finally, since the spin-phonon coupling in Eq. (3) is linear in
the bosonic operators, we can apply a polaron transformation
U (see SM [50]) to decouple spin and phonon dynamics. We
obtain [50,55,58]

UHU† ¼ Hsp þH2B þH3B þHres þOðl2
μ=a2Þ; ð5Þ

with

H2B ¼
X
k;m

0ðV0
k;m − Ṽk;mÞnknm; ð6aÞ

H3B ¼ −
X
k;p;q

0Ṽk;p;qnknpnq: ð6bÞ

(a) (b)

FIG. 1. Setup. (a) Each atom is modeled as a two-level system
with ground state jgi and excited Rydberg state jri. The two levels
are coupled by a laser with Rabi frequencyΩ and detuningΔ. The
atom is trapped inside a tight harmonic optical tweezer (gray) and,
at low temperature, it occupies the ground state of the associated
phonon d.o.f. (red). For simplicity, we assume that Rydberg and
ground state experience the same trapping potential. (b) Energy
diagram of a two-atom system arranged along the x axis. When
both atoms are excited to the Rydberg state, jrri, they experience,
in addition to the electronic dipolar interaction V, the potential
change δV arising as a consequence of the coupling between spin
and phonon d.o.f. and consisting of both two- and three-body
contributions; see text for details. This also results in a state-
dependent displacement δx1;2 of the atoms from their equilibrium
position x01;2, separated by the lattice spacing a.
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Here, we have introduced the coefficients Ṽk;p;q ¼P
μðℏωμÞ−1Wk;p;μWk;q;μ and Ṽk;m≡Ṽk;m;m. Equations (6a)

and (6b) show that, as a consequence of the spin-phonon
coupling, an effective atom-atom interaction emerges. The
latter consists of an extra two-body [Eq. (6a)] and a novel
three-body term [Eq. (6b)], whose strengths are both
∝ Ṽk;p;q. Importantly, the coefficients Ṽk;p;q depend on the
trapping frequencies ωμ and are therefore tunable via the
harmonic confinement.
The termHres in Eq. (5) describes a residual spin-phonon

coupling, which is negligible in the limit jWk;m;μj ≪ ℏωμ

[50,55,56,58]. In this regime the phonon dynamics decou-
ples from the spins. The approximation further improves at
temperatures low enough to ensure a ≳90% population in
the vibrational ground state. Such temperatures can be
experimentally achieved in state-of-the-art optical tweezers
via Raman sideband cooling [34,59]. Details on the validity
of this spin-phonon decoupling approximation are provided
in next section and in SM [50].
Microwave-dressed Rydberg states.—The strength of the

phonon-mediated effective interactions in Eqs. (6a) and
(6b) is directly connected to the strength of the dipolar
ones: This is because the coefficients Wk;m;μ are propor-
tional to the gradient of Vðrk; rmÞ. Typical dipolar inter-
actions exhibit a power-law behavior ∝ jrk − rmj−α (e.g.,
α ¼ 6 for a van der Waals potential). In which case, one
generally finds that Vðrk; rmÞ ≫ Ṽk;m. This means that, in
common situations, phonon-mediated interactions only
represent a small correction. However, the interaction
potential between excited atoms can be tailored via micro-
wave (MW) dressing of two different Rydberg states
[50,60,61], allowing us to make the effective interactions
dominant. In Fig. 2(a) we show one possible realization
of such potential, obtained via MW dressing of the atomic
levels j65Si and j75Pi of 87Rb atoms arranged on a square
lattice. Here, a and aNNN ¼ ffiffiffi

2
p

are the distances at
equilibrium between nearest neighbors (NNs) and next-
nearest neighbors (NNNs), respectively. By properly
choosing the MW field parameters (see SM for details
[50]), the potential can be parametrized, to a good degree of
approximation, as

Vðrk;rmÞ≈
( C1

2jrk−rmj6þ
c1
2a6

for jrk−rmj≈a

C2

2jrk−rmj6þ
c2

2ðaNNNÞ6 for jrk−rmj≈aNNN;
ð7Þ

with, for a typical dressed potential, Vðrk; rmÞ ≈ 0 for
jrk − rmj > aNNN [50]. MW dressing allows us to control
the values of the constants C1;2 and c1;2 in Eq. (7)
independently and, in turn, to tune the strength of the
dipolar potential (as well as its gradient) at NN and NNN
distances, denoted by V1 and V2, respectively.
Phonon-mediated interactions.—For the case shown in

Fig. 2(a), we have V1=ℏ ≈ 0, V2=ℏ ≈ 2π × 0.3 MHz, and

ℏ−1dV=dRjR¼a ¼ 2π × 1.45 MHz. In this way we can thus
achieve regimes dominated by the phonon-mediated inter-
actions, whose strength along the μ direction is described
by the parameter

V3;μ ¼
36l2

μ

ℏωμa2

�
C1

a6

�
2

: ð8Þ

In this case, Eqs. (6) and (6b) become

H2B ¼
X
hk;mi

ðV1 − Ṽk;mÞnknm þ
X

hhk;mii
V2nknm; ð9aÞ

H3B ¼ −
X
hk;p;qi

Ṽk;p;qnknpnq; ð9bÞ

where, explicitly, Ṽk;p;q ¼ V3;μR̃0
k;p;μR̃

0
k;q;μ, with R̃0

k;m ¼
a−1ðr0k − r0mÞ. The symbols hk;mi and hhk;mii denote
the sum over NNs and NNNs, respectively, while
hk; p; qi implies that the sum is restricted to sites satisfying
jR̃0

k;pj ¼ jR̃0
k;qj ¼ 1. Note that, due to the presence of the

factors R̃0
k;m;μ, the terms ∝ V3;μ strongly depend on the

lattice geometry and, as we will show for the case of
bipartite lattices, they give rise to anisotropic contributions
in atom-atom interactions even if original dipolar forces are
isotropic.
The strength of the phonon-mediated interactions

can be tailored by tuning the trapping frequencies ωμ

[see Eq. (8)], which are typically of the order of hundreds of
kilohertz [6,9,38,40]. In particular, Eq. (9a) implies that it is
possible to make the overall two-body term vanish and
maximize the effects of three-body interactions. Recalling
Eq. (5), in order to decouple the electronic and vibration

(a) (b)

FIG. 2. MW-dressed potential and three-body interaction
strength. (a) Dressed potentialV=ℏ (units 2π ×MHz) as a function
of interatom distance R (units μm) obtained via MW dressing. See
text and SM [50]. In the square lattice case, the atomic separations
are a ≈ 5.3 μm and aNNN ¼ ffiffiffi

2
p

a (blue dashed line). The func-
tional form of the potential is described by Eq. (7), with
C1=ðℏa6Þ¼2π×2.6MHz, C2=ðℏa6Þ¼2π×0.3MHz, c1 ≈ −C1,
and c2 ¼ 0. (b) Density plot ofV3=ℏ as a function ofC1=ðℏa6Þ and
ω (units 2π ×MHz), with ωμ ¼ ω. The regime with jWk;m;μj ≤
ℏωμ (in gray) is separated by the bound given in Eq. (10) (red solid
curve). The casewithV3 ¼ V2 is indicated by the red dashed curve.
The hatched area denotes the regime where the timescale corre-
sponding to V3 is > 50 μs. Here, C2=ðℏa6NNNÞ ¼ −0.1C1=ðℏa6Þ,
c1¼−C1, and c2¼0.
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d.o.f. and to focus only on the spin dynamics, we have to
require jWk;m;μj ≪ ℏωμ. On the other hand, to access
regimes governed by the effective two- and three-body
interactions, one should also consider V3 ¼

P
μ V3;μ ∼

V1;2. From Eqs. (4) and (8), the above conditions translate
into the following bounds on ωμ:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18ℏ
ma2

�
C1

ℏa6

�
2

3

s
≪ ωμ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72

ma2V1;2

�
C1

2a6

�
2

s
: ð10Þ

In Fig. 2(b), we show typical values of the effective
interaction strength V3 for a square lattice geometry. The
gray region denotes the regime where jWk;m;μj ≤ ℏωμ,
while along the red dashed curve, V3 ¼ V2. As discussed
in more detail in SM [50], the leftmost condition in
Eq. (10), which holds for any value of Ω, can be relaxed
in the strong (effective) interaction regime, where
V3=Ω ≫ jWk;m;μj=ðℏωμÞ, while the spin-phonon decou-
pling becomes exact in the classical limit (i.e., with
vanishing Rabi frequency Ω). Thus, as can be seen in
Fig. 2(b), the regime with V2 ∼ V3 can be accessed
experimentally and corresponds to trapping frequencies
and coupling strengths achievable in Rydberg atom tweezer
arrays [6,40,42]. Finally, we note that the timescales
associated with the effective interaction dynamics,
τ3 ¼ ℏ=V3, are < 50 μs in a wide region of the parameter
space [i.e., the nonhatched area in Fig. 2(b)] and are thus
significantly shorter than the lifetime of the Rydberg states
used in tailoring the MW-dressed potential of Fig. 2(a),
which are of the order of hundreds of microseconds [50].
Phase diagram for a bipartite lattice.—We now focus on

a system of atoms arranged on a bipartite lattice and
investigate the effects of the interplay between (two-body)
dipolar and effective (two- and three-body) interactions on
its phase diagram. The simplest case of a square lattice is
shown in Fig. 3(a). The different contributions to atom-
atom interaction are listed in Figs. 3(a) and 3(c).
Importantly, the lattice-dependent structure of H3B in
Eq. (6b) implies that effective two-body interactions are
attractive while, on the contrary, three-body terms have a
repulsive character. This feature is quite general and, e.g., in
Ising spin models on nonbipartite lattices (triangular,
kagome) it could be employed to implement frustrated
interactions [15,19–21]. The study of such phenomena will
constitute the focus of future investigations. Because of the
competition between two- and three-body interactions, we
expect that different phases emerge. To map out the phase
diagram, we consider the classical limit (i.e., with vanish-
ing Rabi frequency Ω) and determine its ground state
through a classical Metropolis algorithm [62,63] by
employing an annealing scheme [64].
Results are displayed in Figs. 4(a)–4(c). Here, we show

the behavior in the V2 − V3 plane (with V1 > 0 and
V3;x ¼ V3;y) of the average value of the Rydberg excitation

density hni of the density of dimers hndimi and of the
density of trimers hntrimi [see Figs. 3(c) and 3(d)]. Beyond
the trivial states with all excited and all deexcited atoms,
four further phases emerge, see Fig. 4(d), which are
(1) checkerboard phase, dominated by the repulsive con-
tribution ∝ V1, (2) striped phase with a single three-atom
stripe, dominated by NNN two-body (attractive) interaction
∝ V2, (3) frustrated striped phase with one missing line
[here, the trimers occurring in (2) are melted due to the
three-body repulsive contribution ∝ V3], and (4) four-
excitation clustered phase, dominated by attractive two-
body interactions ∝ V3. Concerning the latter, we note that
the transition is not as sharp as the other ones. Indeed, as
can be seen from the last panel of Fig. 4(d), the lattice is not
entirely covered by four-particle clusters. This may suggest
either that (4) is a liquid phase or that it represents a critical
region. A full covering can be obtained for V2 > 0, where
attractive NNN interactions contribute to enhance the
energy gain in forming clusters.
Interestingly, effective interactions due to spin-phonon

coupling give rise to finite-size frustration phenomena even
in a square lattice in the presence of isotropic dipolar
interactions. This is manifest in the emergence of the
different striped phases (2) and (3): see Fig. 4, which
displays the case of a lattice with an even number of sites.
On the contrary, if an odd number of sites is considered,
only a single regular striped phase emerges in this region of
the phase diagram. However, a frustrated phase forms
inside phase (1) (see SM [50]).
In nonsquare lattices, the geometrical factors character-

izing phonon-mediated interactions [see Eq. (9)] give rise

(a)

(b)

(c)

(d)

FIG. 3. Interaction terms in bipartite lattices. (a) Square and
(b) honeycomb lattice with NNs (orange dots) and NNNs (blue
squares) interacting through dipolar interactions (red solid and
blue dashed lines, respectively). As a consequence of the phonon-
mediated coupling, effective multibody interaction terms arise.
Two-body (green, left) and three-body (purple, right) contribu-
tions along the horizontal (solid line) and vertical (dotted line)
direction are shown, with their corresponding sign, in (c) and
(d) for the square and honeycomb geometries, respectively. Note
that, in the latter case, horizontal (solid line) terms contribute to
both x and y directions, resulting in anisotropic interactions.
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to anisotropic two- and three-body contributions even if the
original dipolar interactions between atoms are isotropic.
This can be seen in Fig. 3(d), where the various interaction
contributions arising in a honeycomb lattice are displayed.
Here, though the phase diagram is similar to the one shown
in Fig. 4, nontrivial and anisotropic system configurations
emerge [50].
The various phases shown in Fig. 4 can be probed in state-

of-the-art Rydberg simulators consisting of 2D defect-free
arrays of optical tweezers [37]. Indeed, as shown in SM [50],
a significant part of the phase diagram in Fig. 4 can be
mapped out by employing trapping frequencies ωμ ranging
from a few tens to a few hundred kilohertz, while the
required dipolar interaction couplings are of the order of a
few megahertz. The desired many-body states can be
prepared by real-time control of Rabi frequency and detun-
ing via a generalization of the rapid adiabatic passage
protocol proposed in Refs. [22,23] and demonstrated in
Ref. [24]. The latter is perfectly compatible with the time-
scales associated with the effective interactions and, in turn,
with the lifetime of the Rydberg states we considered.
Conclusions.—We have shown that electron-phonon

interactions in Rydberg lattice quantum simulators permit
the engineering of tunable multibody interactions. We have
illustrated the underlying mechanism in bipartite lattices,
discussing in particular the case of an isotropic square
lattice, where we studied the phase diagram in the classical
limit. Going beyond this limit and considering the impact
of quantum fluctuations (Ω > 0) will be possible in
Rydberg quantum simulator experiments. Many future

directions of this work can be envisioned: In particular,
we expect that, as a consequence of the lattice-dependent
structure of the induced interactions, peculiar two- and
three-body terms would arise in nonbipartite lattices (e.g.,
triangular, kagome), allowing for the investigation of
frustrated magnetism in spin models with nontrivial multi-
body interactions. Furthermore, the mechanism leading
from the spin-phonon coupling to effective many-body
interactions can be generalized to different kinds of bare
atom-atom potentials (e.g., exchange interactions, oscillat-
ing potentials) and may allow for engineering effective
interactions with different structure and/or even n-body
(with n > 3) contributions.
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