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We show through first-principles nuclear structure calculations that the special nature of the strong
nuclear force determines highly regular patterns heretofore unrecognized in nuclei that can be tied to an
emergent approximate symmetry. This symmetry is ubiquitous and mathematically tracks with a
symplectic symmetry group. This, in turn, has important implications for understanding the physics of
nuclei: we find that nuclei are made of only a few equilibrium shapes, deformed or not, with associated
vibrations and rotations. It also opens the path for ab initio large-scale modeling of open-shell intermediate-
mass nuclei without the need for renormalized interactions and effective charges.
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Introduction.—Exact symmetry and symmetry-breaking
phenomena play a key role in providing a better under-
standing of the physics of many-particle systems, from
quarks and nuclei, to molecules and galaxies. In atomic
nuclei, exact and dominant symmetries such as rotational
invariance, parity, and charge independence have been
established. However, even when these symmetries are
taken into account, the structure of nuclei remains illusive
and only partially understood, with no additional sym-
metries immediately evident from the underlying interac-
tion between protons and neutrons.
The nuclear shell model is based on the premise that

nuclei have an underlying spherical harmonic oscillator
(HO) shell structure [1], with residual interactions. In fact,
with effective interactions (renormalized in the nuclear
medium to a valence shell) and large effective charges that
are introduced to account for missing collectivity, the shell
model is successful at explaining many properties of nuclei.
However, it has been much less successful at predicting the
many surprises that surface, such as the highly collective
rotational states that are described phenomenologically by
the Bohr-Mottelson collective model [2], as well as the
recognition that the first excited state of the doubly closed
shell nucleus of 16O is the head of a strongly deformed
rotational band [3,4]. The coexistence of states of widely
differing deformation in many nuclei is now well estab-
lished [5–8] as an emergent phenomenon and dramatically
exposes the limitations of the standard shell model.
To address this and to understand the physics of nuclei

without limitations within the interaction and approxima-
tions during the many-body nuclear simulations, we use an

ab initio framework that starts with realistic interactions
tied to elementary particle physics considerations and fitted
to nucleon-nucleon data. Such calculations are now pos-
sible and are able to give converged results for successful
applications to structure and reactions of light nuclei by the
use of supercomputers [9–21] with recent advances into the
medium-mass region [22–25]. However, in ab initio cal-
culations the complexity of the nuclear problem dramati-
cally increases with the number of particles, and when
expressed in terms of billions of shell-model basis states,
the structure of a nuclear state is unrecognizable. But
expressing it in a more informative basis, the symmetry-
adapted (SA) collective basis [14,26], leads to a major
breakthrough: in this Letter, we report on the remarkable
outcome from first-principles investigations up through the
intermediate-mass region, namely, the simplicity of nuclear
low-lying states and the striking dominance of an asso-
ciated symmetry of nuclear dynamics. Specifically, this is
the symplectic Spð3;RÞ symmetry, which together with its
slight symmetry breaking is shown here to naturally emerge
in atomic nuclei. This exposes for the first time the
fundamental role of the Spð3;RÞ symmetry and establishes
it as a remarkably good symmetry of the strong nuclear
force in the low-energy regime.
This emergent symplectic symmetry provides important

new information through its link to nuclear collectivity: we
show here that nuclei are made of only a few equilibrium
shapes with associated vibrations and rotations. This
pioneers ab initio descriptions that capitalize on the
symplectic symmetry of open-shell intermediate-mass
nuclei without the use of effective charges, with anticipated
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predictions, e.g., for short-lived isotopes with large defor-
mation or cluster substructure along various nucleosynthe-
sis pathways, especially where experimental measurements
are incomplete or not available.
It is known that SU(3), a subgroup of Spð3;RÞ, is the

symmetry group of the spherical harmonic oscillator that
underpins the shell model [1] and the valence-shell SU(3)
Elliott model [27], which naturally describes rotations of a
deformed nucleus without the need for breaking rotational
symmetry. The key role of deformation in nuclei, along
with the coexistence of low-lying states in a single nucleus
with different quadrupole moments [5], makes the quadru-
pole moment hQi a dominant fundamental property of the
nucleus. Together with the monopole moment hr2i or
“size” of the nucleus, it establishes the energy scale of
the nuclear problem. Indeed, the nucleus size and shape
underpin the essence of symplectic Spð3;RÞ symmetry (see
also Fig. 1 and Supplemental Material [28]). Not surpris-
ingly, Spð3;RÞ, the underlying symmetry of the symplectic
rotor model [29,30], has been found to play a key role
across the nuclear chart—from the lightest systems [4,31],
through intermediate-mass nuclei [14,32,33], up to strongly
deformed nuclei of the rare-earth and actinide regions
[30,34–36]. The results agree with experimental evidence
that supports enhanced deformation and clustering in
nuclei, as suggested by energy spectra, electric monopole
and quadrupole transitions, radii, and quadrupole moments
[5,37,38]. While these earlier models have successfully
explained the observed collective patterns, they have
assumed symmetry-based approximations. Only now, the
present outcomes not only explain but also predict the
emergence of nuclear collectivity across nuclei, even in
close-to-spherical nuclear states without any recognizable
rotational properties, as revealed within an ab initio

framework without a priori symmetry assumptions, the
symmetry-adapted no-core shell model (SA-NCSM)
[14,26,39] with chiral effective field theory interactions.
SA-NCSM with Spð3;RÞ-adapted basis.—The SA-

NCSM is based on the shell-model theory [9,41] that
solves the many-body Schrödinger equation for A particles
and, in its most general form, is an exact many-body
“configuration interaction” method. The intrinsic nonrela-
tivistic nuclear Hamiltonian includes the relative kinetic
energy, nucleon-nucleon (NN) and, possibly, three-nucleon
(3N) interactions, typically derived in the chiral effective
field theory [42–45], along with the Coulomb interaction
between the protons. We have adopted various realistic
interactions without renormalization in nuclear medium,
with results illustrated here for the Entem-Machleidt (EM)
N3LO [44] and NNLOopt [46] chiral potentials. We neglect
explicit 3N interactions, since they are known to be
hierarchically smaller than NN.
New developments here focus on constructing the

Spð3;RÞ-adapted basis (for computer codes, see
Ref. [47]). This basis is built from the SU(3)-adapted basis
reviewed in Ref. [14]. Briefly, each SU(3)-adapted basis
state has definite proton (neutron) SpðnÞ and total S intrinsic
spins, along with deformation-related ðλμÞSUð3Þ quantum
numbers and total number of HO quantaN ≤ Nmax (Nmax is
the same as the cutoff used in the conventional NCSM).
The difficulty in constructing the symplectic basis stems
from the fact that there are no known Spð3;RÞ coupling or
recoupling coefficients, and one has to resort to innovative
techniques. Here, we adopt the SU(3) scalar operator

fB† × Bgð00ÞL¼0M¼0, where the Spð3;RÞ generator B† moves
a particle two shells up [arrows in Fig. 1(b)]. This operator is
computed for a set of basis states with the sameNðλμÞSpSnS;
eigenvectors of this matrix realize Spð3;RÞ-adapted basis
states and are used to construct the Hamiltonian in the new
symplectic basis; the known eigenvalues are used to assign
each eigenvector to a specific symplectic irreducible repre-
sentation (irrep). While this procedure is computationally
intensive, especially for higher-N sets of large dimensionality,
the resulting Hamiltonian matrix is drastically small in size
and its eigensolutions, the nuclear energies and states, can be
calculated without the need for supercomputers.
Emergent symmetry and dominant nuclear features from

first principles.—We report on the remarkable outcome,
as unveiled from first-principles calculations below the
calcium region, that nuclei exhibit relatively simple phys-
ics. We now understand that a low-lying nuclear state is
predominantly composed of a few equilibrium shapes that
vibrate and rotate, with each shape characterized by a single
symplectic irrep.
To illustrate this, we consider the physics of 20Ne (Fig. 2)

and the contribution of a single symplectic irrep to its low-
lying states, Fig. 2(a). Indeed, a single symplectic irrep can
provide insight into the nuclear dynamics: as shown earlier
[29,30,36,48] and discussed in the next paragraph, all
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FIG. 1. (a) The symplectic group Spð3;RÞ consists of all
particle-independent linear canonical transformations ðAC B

DÞ of
the single-particle phase-space observables r⃗i (position) and p⃗i
(momentum) that preserve the Heisenberg commutation relations
½rαi; pα0j� ¼ iℏδαα0δij, α; α0 ¼ x, y, z [40]. (b) In the shell model,
the basis configurations are multiples of symplectic excitations,
generated by r2 and Q. A key feature is that a single-particle
Spð3;RÞ irreducible representation spans all positive-(or nega-
tive-)parity states for a particle in a 3D spherical or deformed
harmonic oscillator.
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configurations within a symplectic irrep preserve an equi-
librium shape (or simply “shape”) and realize its rotations,
vibrations, and spatial orientations, implying that the 20Ne
ab initio wave functions for Jπ ¼ 0þgs; 2þ;…; 8þ shown in
Fig. 2(a) indeed exhibit a predominance of a single shape
that vibrates and rotates [see also, Fig. 2(b), largest circle].
To understand the relation of the symplectic symmetry to

the shapes dynamics, we note that the quadrupole moment
Q does not mix irreps. Hence, an average quadrupole
ellipsoid can be assigned to each symplectic irrep. This is
best understood in the limit of a valence shell, where the
symplectic basis recovers the SU(3)-adapted basis of the
Elliott model: a given many-particle SU(3) state can be
associated with an average shape using the familiar shape
parameters, deformation β and triaxiality γ, through the
expectation values hQ ·Qi ∼ β2 and h½Q ×Q�2 ·Qi ∼
β3 cos 3γ [49,50] [note that β and γ, while providing a
physical meaning to ðλμÞ, describe average ellipsoids that
lack details, e.g., as evident in the one-body densities
of Fig. 2]. And since L is a good quantum number of each
SU(3) state, it naturally informs about the rotations of this
ellipsoid. Finally, the associated vibrations are described by
the symplectic (particle-hole) excitations, here referred to
as “dynamical shapes”. This can be illustrated for a single
spherical shape, where the symplectic excitations realize
the microscopic counterpart of the surface vibrations of the
Bohr-Mottelson collective model [48,51]. As further shown
in the β − γ plots of Fig. 2(a), the set of excited 0þ states
with nonnegligible contribution of the 1p-1h vibrations of
the ground-state shape describes a fragmented giant
monopole resonance (breathing mode) with a centroid

around 29 MeV and a typical deformation content spread
out to large β values due to vibrations [52].
The Spð3;RÞ-adapted basis is constructed for various

nuclei, pointing to unexpectedly ubiquitous symplectic
symmetry, with the illustrative examples for the odd-odd
6Li, 8He (considered to be spherical with a halo structure),
and the intermediate-mass 20Ne (Fig. 3). The outcome
provides further evidence that nuclei are predominantly
comprised (typically in excess of 70%–80%) of only a few
shapes, often a single shape (a single symplectic irrep) as
for 6Li, 8B, 8Be, 16O, and 20Ne, or two shapes, e.g., for 8He
and 12C [see Ref. [14] for 8B and 8Be based on SU(3)
analysis, and [26] for 12C and 16O]. Hence, the ground state
of 6Li and 20Ne (16O) is found to exhibit a prolate (spherical)
shape, while an oblate shape dominates in the case of 8He.
The same features, perhaps even more pronounced, are
anticipated across the region of heavy nuclei where the
symplectic symmetry has been originally adopted to
explain deformation-related nuclear properties [30,34–36].
Besides the predominant irrep(s), there is a manageable

number of symplectic irreps, each of which contributes at a
level that is typically at least an order of magnitude smaller,
as shown in Figs. 3(a)–3(c). Furthermore, the outcome
implies that the richness of the low-lying excitation spectra
naturally emerges from these shapes through their rotations,
corroborating earlier results [53–55]. Indeed, practically the
same symplectic content observed for the low-lying states in
6Li, Fig. 3(a), and for those in 20Ne, Fig. 3(c), is a rigorous
signature of rotations of a shape and can be used to identify
members of a rotational band. A notable outcome is that
excitation energies and transition rates for a few symplectic
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FIG. 2. (a) Excitation energies (horizontal axis) of the ground-state (gs) rotational band (Jπ ¼ 0þgs; 2þ; 4þ; 6þ, and 8þ) and excited 0þ

states in 20Ne, shown together with the contribution to each state (vertical axis) of the single shape that dominates the ground state.
According to this, states are grouped and schematically illustrated by “classical” shapes, vibrations, and rotations, where the ab initio
one-body density profile in the body-fixed frame is shown for 0þ. (b) Deformation distribution of the equilibrium shapes that make up a
state with contributions given by the area of the circles, specified by the average deformation β and triaxiality angle γ. Results are for
ab initio SA-NCSM calculations with NNLOopt for an SU(3) basis that yields a fast convergence of the gs rms radius (model space of 11
HO shells with ℏΩ ¼ 15 MeV intershell distance).
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irreps closely reproduce the experimental data, Fig. 3(d), and
remain stable as the number of symplectic irreps is varied.
Extrapolations to the infinite number of shells use the
Shanks transformation and are based on the fast convergence
we find for observables [56,57].
Radii and E2 transitions are determined by Spð3;RÞ

generators (r2 and Q, respectively) that do not mix
symplectic irreps. The predominance of a single symplectic
irrep reveals the remarkable result that the largest fraction
of these observables, and hence nuclear size and collec-
tivity, necessarily emerges within this symplectic irrep,
Fig. 3(d). We note that the underprediction of the E2
transitions agrees with rms radii estimates, as both observ-
ables exhibit almost perfect correlations (see Supplemental
Material [28]). This also implies that the inclusion of 3N
forces, currently work in progress, will have an effect on the
E2 estimates, albeit to a small degree: e.g., rms radii
decrease by about 3% for light nuclei with EM-N3LO

NNþ 3N [58]; further, the extrapolated rms matter radii for
NNLOopt NN deviate from experiment only by 2% for 6Li
and 6.7% for 20Ne (see also Ref. [20]). Indeed, as shown in
Figs. 2 and 3, the symmetry patterns for the EM-N3LO,
whose complementary 3N forces give non-negligible con-
tributions to binding energies and radii, exhibit a strikingly
similar behavior to the ones for NNLOopt that minimizes
such 3N contribution in 3H and 3;4He [46].
The outcome is not sensitive to the parameters of the basis,

ℏΩ andNmax. Thesemodel parameters can be related toLeff ,
the infrared IR cutoff, and aeff , the ultraviolet UV cutoff
Λeff ¼ 1=aeff [59], which can be understood as the effective
size of the model space (“box”) in which the nucleus resides
and its grid size (resolution), respectively. Indeed, the
symplectic content of a nucleus is found to be stable against
variations in the box size or resolution (Fig. 4). This has an
important implication: complete SA-NCSMcalculations are

(a) (b)

(c) (d)

FIG. 3. (a)–(c) Symplectic Spð3;RÞ irreps that make up the rotational band states of 6Li, 8He, and 20Ne (in a close agreement with the
results of Fig. 2); each irrep is specified by its equilibrium shape, labeled by β and the corresponding SU(3) labels ðλμÞ together with
total spin S. Insets: the same irreps but without the predominant contribution, together with the β-γ plot for the ground state.
(d) Observables for 6Li and 20Ne calculated in the ab initio SA-NCSM with Spð3;RÞ basis using only a small number (specified in the
x-axis labels) dominant symplectic irreps including the most dominant one, as compared to experiment (“Expt.”). Energies (with errors
∼100 keV) and BðE2Þ transition strengths (in W.u.) are reported for extrapolations to infinitely many shells of converging results across
variations in the model space size and resolution (see Supplemental Material [28]). Model-space dimensions are shown above each case;
for comparison, the corresponding NCSM dimension for Jπ ¼ 0þ; 2þ; 4þ in 20Ne in 11 HO shells is 3.8 × 1010. Results (a)–(c) and
energies in (d) labeled as “All” are reported for ab initio SA-NCSM calculations for an SU(3) basis that yields a fast convergence of the
gs rms radius: complete (selected) model space of 14 (11) HO major shells for 6Li and 8He (20Ne) with intershell distance of (a)–(b) 20
and (c)–(d) 15 MeV.
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performed in smaller box sizes and/or low resolution to
identify the nonnegligible symplectic irreps, while the
model space is then augmented by extending these irreps
to high (otherwise inaccessible) HO major shells to accom-
modate collective and spatially enhanced modes.
In short, this work shows that nuclei up through the

intermediate-mass region and their low-energy excitations
display relatively simple emergent physics that is collective
in nature and tracks with an approximate symplectic
symmetry heretofore gone unrecognized in the strong
nuclear force. This work may have potential impacts, in
general, to studies of strongly interacting quantum systems,
e.g., incorporating emergent symmetries into tensor net-
work quantum states.
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