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We explore the spacetime structure near nonextremal horizons in any spacetime dimension greater than
two and discover a wealth of novel results: (i) Different boundary conditions are specified by a functional of
the dynamical variables, describing inequivalent interactions at the horizon with a thermal bath. (ii) The
near horizon algebra of a set of boundary conditions, labeled by a parameter s, is given by the semidirect
sum of diffeomorphisms at the horizon with “spin-s supertranslations.” For s ¼ 1 we obtain the first
explicit near horizon realization of the Bondi-Metzner-Sachs algebra. (iii) For another choice, we find a
nonlinear extension of the Heisenberg algebra, generalizing recent results in three spacetime dimensions.
This algebra allows us to recover the aforementioned (linear) ones as composites. (iv) These examples
allow us to equip not only black holes, but also cosmological horizons with soft hair. We also discuss
implications of soft hair for black hole thermodynamics and entropy.
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Horizons are among the most remarkable entities in
geometries with Lorentzian signature, appear in different
contexts, and lead to rich phenomenology, see, e.g.,
Refs. [1–4] and references therein. Black holes, by their
very definition, have horizons [5], which are in turn respon-
sible for their peculiar classical properties that are reflected in
observables such as x-ray spectra from accretion disks [6,7],
the gravitational wave spectrum of black hole mergers
[8–11], or their shadow, as observed recently by the Event
Horizon Telescope [12]. Moreover, horizons are responsible
for semiclassical properties, such as Hawking temperature
and black hole evaporation [13] or the universal result for the
Bekenstein-Hawking entropy [14]. Cosmological horizons
also have thermal properties [15] and the very predictions of
inflation [16–18] about power spectra of primordial pertur-
bations is a result of horizon crossing of the quantum
fluctuations [19–21]. There are observer dependent accel-
eration horizons that lead to Rindler quanta [22,23] and the
Unruh effect [24]. Horizons also feature prominently in
analog black holes (dumb holes) [25,26].
Thermodynamical properties of horizons have led to the

idea of deriving Einstein’s equations (or generalizations
thereof) from thermodynamics [27–29]. Understanding hori-
zons and the associated microstates quantummechanically is

an ongoing research endeavor where considerable progress
has been made already [30–35], partly thanks to the holo-
graphic principle [36,37] as manifested by the AdS=CFT
correspondence [38–40].
Nevertheless, nonextremal horizons (i.e., horizons at

finite temperature) remain largely mysterious [41–46].
No reliable and universal results for their microstates are
known so far. Even in the simpler case of gravity in three
spacetime dimensions, concrete microstate proposals such
as horizon fluff [47,48] require ad hoc assumptions [49]. It
is thus of considerable interest to understand nonextremal
horizons as deeply as possible.
Another motivation for our work is to clarify possible

relations between various different proposals for infinite-
dimensional near horizon symmetries [including symmetries
resembling Bondi-Metzner–van der Burg-Sachs (BMS)
[50,51], Virasoro and others], which may seemingly appear
to be in conflict with each other, see, e.g., Refs. [52–56] and
also Refs. [57–76].
In this work we derive generic properties of nonextremal

horizons, assumed to be in equilibrium with a thermal bath,
in any spacetime dimension greater than two. The physical
properties of the thermal bath are modeled by the way
we impose boundary conditions, and we shall describe
various different well-motivated choices leading to infinite-
dimensional near horizon symmetries. We prove that they
generically span soft hair excitations in the sense ofHawking,
Perry, and Strominger [77] (see also Refs. [78–86]). While
our methods are general, we focus on Einstein gravity
(possibly with cosmological constant).
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We discuss in detail a wide class of boundary conditions,
labeled by a parameter s, whose near horizon symmetry
algebra is given by the semidirect sumof diffeomorphisms at
the spacelike section of the horizon with spin-s super-
translations. In particular, the case of s ¼ 1 contains the
first explicit near horizon realization of BMS in any
dimension. Moreover, we also propose a special type of
boundary conditions whose near horizon symmetries are
described by a suitable nonlinear extension of theHeisenberg
algebra, generalizing the results found in three spacetime
dimensions [53,87]. This algebra allows us to recover the
aforementioned ones as composites, in a way that we shall
make precise.
Since our analysis is valid for any nonextremal horizon it

applies in particular to generic Kerr black holes [88]
(including Schwarzschild) and its generalizations that
include NUT charge [89,90]. Some more detailed analysis
may be found in Ref. [91].
Near horizon expansion.—Let us consider a metric in

D ≥ 3 spacetime dimensions that features a nonextremal
horizon (see Refs. [5,92–94] and references therein for
various notions of horizon). Our working definition of a
nonextremal horizon is that the line element can be brought
into a Rindler-like form [22],

ds2 ¼ −κ2ρ2dt2 þ dρ2 þΩabdxadxb þ…; ð1Þ

where κ is the surface gravity (with κ ≠ 0 to guarantee
nonextremality), t is time, and ρ is some radial coordinate
that vanishes at the horizon. The “horizon metric,” Ωab
[where a ¼ 1; 2;…ðD − 2Þ], has nonvanishing determi-
nant, Ω ¼ detΩab ≠ 0, to avoid degeneracy. The ellipsis
denotes higher order terms or rotation or boost terms, which
we spell out explicitly by defining a suitable near horizon
expansion for the metric.
Our main assumption is that the horizon is free from

singularities and the metric permits a Taylor expansion in ρ
in the near horizon region. Consistency with our assump-
tions above and with smoothness of the horizon determines
the near horizon behavior of the metric, which in a
corotating frame is given by [95]

gtt ¼ −κ2ρ2 þOðρ3Þ; gρρ ¼ 1þOðρÞ;
gtρ ¼ Oðρ2Þ; gρa ¼ fρaρþOðρ2Þ;
gta ¼ ftaρ2 þOðρ3Þ; gab ¼ Ω̂ab þOðρ2Þ; ð2Þ

where Ω̂ab and Ωab are diffeomorphic to each other. All
coefficients in Eq. (2) can depend on time t and the
transverse coordinates xa, but not on the radius ρ.
The near horizon expansion (2) is preserved by a set of

diffeomorphisms generated by vector fields ξμ

ξt ¼ η

κ
þOðρÞ; ξρ ¼Oðρ2Þ; ξa ¼ ηa þOðρ2Þ; ð3Þ

where ηa depends arbitrarily on xa, while η depends addi-
tionally on t subject to the condition ∂tηþ ηa∂aκ ¼ δκ. The
dynamical fields P and J a defined by

P ≔
ffiffiffiffi
Ω

p

8πG
; J a ≔

ffiffiffiffi
Ω

p

16πGκ
ð∂tfρa − 2ftaÞ; ð4Þ

transform as

δP ¼ ηa∂aP þ P∂aη
a; ð5aÞ

δJ a ¼ P∂aηþ ηc∂cJ a þ J c∂aη
c þ J a∂cη

c: ð5bÞ

The near horizon symmetries are spanned by generators,
co-dimension two surface charges, that can be calculated
using different methods; see, e.g., Refs. [96–98]. Their
variations,

δQ½η; ηa� ¼
Z

dD−2x½ηδP þ ηaδJ a�; ð6Þ

turn out to be nontrivial and finite. To unveil the near
horizon symmetries as a next step we impose boundary
conditions that lead to integrable charges.
Fixing boundary conditions.—To obtain the charges

Q½η; ηa� (rather than their variations) we need precise
boundary conditions by specifying the allowed variations
of the metric. To admit the most general boundary con-
ditions we rewrite the near horizon expansion (2) in a
rotating frame, implemented through an Arnowitt-Deser-
Misner decomposition [99]. Metric components gtμ (with
μ ¼ t, ρ, a) determine lapse function N and shift vector
Ni ¼ ðNρ; NaÞ, which are Lagrange multipliers in the
canonical formulation. Their leading order boundary
behavior determines the sources (in holographic literature)
or, equivalently, the chemical potentials (in black hole
thermodynamics literature). In a rotating frame, lapse and
shift expand as

N¼N ρþOðρ2Þ; Na¼N aþOðρ2Þ; Nρ¼Oðρ2Þ: ð7Þ

The corotating falloff is recovered for N a ¼ 0, N ¼ κ.
Chemical potentials N and N a appear in the boundary

term IB that has to be added to the bulk Hamiltonian action
for a well-defined variation principle [96]. It is evaluated in
the limit of small ρ and its variation reads

δIB ¼ −
Z

dtdD−2xðN δP þN aδJ aÞ; ð8Þ

where J a acquires additional terms as compared to Eq. (4)
in a rotating frame [100]. Following Ref. [101], integra-
bility of the boundary term (8) generically requires
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N ¼ δF
δP

; N a ¼ δF
δJ a

ð9Þ

for some functional F½P;J a� ¼
R
dD−2xF ðP;J aÞ.

Therefore, the boundary conditions are fully fixed only once
this functional is specified.
As spacetime does not possess a boundary near the

horizon, different choices for the chemical potentials (9)
amount to different prescriptions for the black hole inter-
actions with a thermal bath, without the need of specifying
the microscopic structure of the surrounding atmosphere.
Thus, we are following an old and standard practice, like in
electromagnetism of different media: all of the relevant
information about the microscopic structure of the material
is summarized in Maxwell’s theory through the precise way
one fixes the chemical potential at the boundary of the
body, e.g., by fixing the time component of the gauge
potential At for a conductor (Dirichlet), or its normal
derivative for a dielectric medium (Neumann).
Compatibility of time evolution with near horizon sym-

metries implies that the symmetry generator parameters in
Eq. (6) acquire the same field dependence as the chemical
potentials in Eq. (9), with N → η and N a → ηa. Thus,
integrability of the boundary term (8) implies integrability of
the symmetry generators (6).
We focus next on special choices for F ðP;J aÞ that lead

to different sets of boundary conditions with an infinite
number of near horizon symmetries.
BMS-like symmetries.—Retaining the full set of diffeo-

morphisms along the spacelike section of the horizon leads
to an infinite amount of near horizon symmetries. This is
achieved, e.g., by fixing δN a ¼ 0, while the lapse N can
still be allowed to depend on P. We propose a family of
boundary conditions labeled by a parameter s,

F ðP;J aÞ ¼ N ðsÞ
Prþ1

rþ 1
þN aJ a; ð10Þ

where N ðsÞ is fixed, δN ðsÞ ¼ 0, and r ¼ s=ðD − 2Þ. This
choice, together with Eq. (9), implies

N ¼ N ðsÞPr ⇒ η ¼ ηðsÞPr: ð11Þ
The variation of the charges (6) integrates as

Q½ηðsÞ; ηa� ¼
Z

dD−2x½ηðsÞPðsÞ þ ηaJ a� ð12Þ

with PðsÞ ¼ Prþ1=ðrþ 1Þ. Hence, from Eq. (5), the trans-
formation law of the fields is given by

δPðsÞ ¼ ηa∂aPðsÞ þ ðrþ 1ÞPðsÞ∂aη
a; ð13aÞ

δJ a ¼ ðrþ 1ÞPðsÞ∂aηðsÞ þ rηðsÞ∂aPðsÞ
þ ηc∂cJ a þ J a∂cη

c þ J c∂aη
c; ð13bÞ

so that the near horizon Poisson bracket algebra reads

fJ aðxÞ;PðsÞðyÞg¼
�
rPðsÞðyÞ

∂
∂xa−PðsÞðxÞ

∂
∂ya

�
δðx−yÞ;

fPðsÞðxÞ;PðsÞðyÞg¼ 0;

fJ aðxÞ;J bðyÞg¼
�
J aðyÞ

∂
∂xb−J bðxÞ

∂
∂ya

�
δðx−yÞ:

ð14Þ
The algebra (14) is the semidirect sumof diffeomorphisms

at the (D − 2)-dimensional spacelike section of the horizon,
generated byJ aðxÞ, anda generalizationof supertranslations
spanned by PðsÞðxÞ.
If the spacelike section of the horizon has the topology

of SD−2, the largest finite subalgebra is given by the
semidirect sum of soðD − 1; 1Þ (Lorentz) and “spin-s
translations,” spanned by suitable subsets of J aðxÞ and
PðsÞðxÞ, respectively.
ForD ¼ 3, the algebra (14) for s ¼ 0 agrees with the one

found in Refs. [52,69], while for s ¼ 1 it is the BMS3
algebra [102,103]. For generic s it is the Wð0;−sÞ algebra
[104,105], where the supertranslations are generators with
conformal weight h ¼ sþ 1.
For D ≥ 4, if the horizon metric is restricted to be

conformal to the round sphere, Ωab ¼ Φ2ΩSD−2

ab , the param-
eters ηa reduce to the conformal Killing vectors of SD−2, so
that its associated generators J a exactly span the Lorentz
algebra soðD − 1; 1Þ. It is then worth highlighting that our
boundary conditions for s ¼ 1 provide the first explicit
realization of the BMSD algebra as near horizon sym-
metries in four and higher dimensions. Further aspects
of BMSD and its higher spin extensions may be found
in Ref. [91].
For s ¼ 0, the algebra carries “scalar supertranslations”

and agrees with the result in Refs. [52,69] for D ¼ 3, 4.
Heisenberg-like symmetries.—The parameters ηa in

Eq. (6) are vectors, while their corresponding charges
are 1-form densities of weight one. It is natural to swap
their role, in the sense that the charges are 1-forms and their
corresponding parameters become densities. This set of
boundary conditions is obtained by choosing

F ðP;J aÞ ¼ N HP þN a
HJ aP−1; ð15Þ

with N H and N a
H fixed (δN H ¼ 0, δN a

H ¼ 0). The
chemical potentials follow from Eq. (9), so that the
symmetry parameters in Eq. (6) are now given by

ηa ¼ ηaHP
−1; η ¼ ηH − ηaHJ aP−2: ð16Þ

The variation of the generators (6) then integrates as

QH½ηH; ηaH� ¼
Z

dD−2x½ηHP þ ηaHJ
H
a � ð17Þ
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with the 1-formJ H
a ≔ J aP−1. The transformation laws (5)

now yields

δP ¼ ∂aη
a
H; ð18aÞ

δJ H
a ¼ ∂aηH − ηbHFabP−1; ð18bÞ

where Fab ≔ ∂aJ H
b − ∂bJ H

a . The transformation laws (18)
establish the Poisson bracket algebra

fJ H
a ðxÞ;PðyÞg ¼ ∂

∂xa δðx − yÞ; ð19aÞ

fPðxÞ;PðyÞg ¼ 0; ð19bÞ

fJ H
a ðxÞ;J H

b ðyÞg ¼ P−1ðxÞFbaðxÞδðx − yÞ: ð19cÞ

We note that Eq. (19a) implies fPðxÞ; FabðyÞg ¼ 0.
In three dimensions Fab identically vanishes, so that the

boundary conditions reduce to those in Refs. [53,87],
which accommodate “soft hairy” black hole solutions,
while Eq. (19) becomes equivalent to two copies of ûð1Þ
current algebras.
In D > 3 dimensions the phase space restricted to

configurations with Fab ¼ 0 is preserved under the full
set of asymptotic symmetries in Eq. (18). Examples are
toroidal Kerr-AdS black holes and Schwarzschild black
holes, together with their soft hair excitations. In these
cases the 1-form J H

a is locally exact, J H
a ≕ 8πG∂aQ.

Then, the only nonvanishing Poisson bracket (19a),

fQðxÞ;PðyÞg ¼ 1

8πG
δðx − yÞ; ð20Þ

yields the Heisenberg algebra. Quantizing the Poisson
bracket algebra (20) (viz., replacing if; g by commutators
½; �) yields canonical commutation relations with the factor
1=ð4GÞ playing the role of Planck’s constant h [106]. This
simple result could be relevant in semiclassical descriptions
of black holes [107].
Compositeness, soft hair, and thermodynamics.—We

discussed two classes of algebras, the BMS-like ones
(14) in which the right-hand side (rhs) of commutators
are linear in the generators ðJ a;PðsÞÞ and the Heisenberg-
like algebra spanned by ðJ H

a ;PÞ, in which the rhs of
Eq. (19c) are nonlinear in generators. Remarkably, gen-
erators of the BMS-like algebras (14) emerge as composites
in terms of generators of the Heisenberg-like algebra (19),
J a ¼ J H

a P, and PðsÞ ¼ Prþ1=ðrþ 1Þ. In this sense, the
Heisenberg-like generators ðJ H

a ;PÞ are the building
blocks. We have thus generalized this feature observed
first in three dimensions [87] to arbitrary dimensions. Note
that in D ≥ 4 the nonlinearity of the Heisenberg-like
algebra is the key to establish the map between the
generators.

All boundary conditions discussed here allow soft hair
excitations in the sense of Ref. [77], i.e., gravitational
excitations that carry no energy, but nonetheless are not
pure gauge. For the BMS-like boundary conditions, the near
horizon totalHamiltonian, given by thegenerator of unit time
translations, in a nonrotating frame reads HðsÞ ¼ Q½∂t� ¼R
dD−2xN ðsÞPðsÞ. The spin-s supertranslations PðsÞ corre-

spond to soft hair charges since they commutewithHðsÞ, see
Eq. (14). For Heisenberg-like boundary conditions, the
generators P also stand for soft hair charges, since they
commute with the near horizon Hamiltonian, which in a
nonrotating frame reads HH ¼ Q½∂t� ¼

R
dD−2xN HP.

We address now the Bekenstein-Hawking entropy. For
BMS-like boundary conditions it reads S¼A=ð4GÞ¼
2πðrþ1Þ½ð1=ðrþ1Þ� R dD−2xðPðsÞÞ½ð1=ðrþ1Þ�. Although soft hair
excitations do not contribute to the energy, for s ≠ 0 they
contribute to the entropy through the modes of PðsÞ. Only
for s ¼ 0 or for the Heisenberg-like boundary conditions
soft hair excitations do not contribute to the Bekenstein-
Hawking entropy, which is given by the zero mode of
P0 ¼ P [52,53],

S ¼ 2πP0; ð21Þ

with P0 ¼
R
dD−2xP.

Different choices of boundary conditions generically
describe inequivalent thermodynamic ensembles. The
chemical potentials correspond to the variables that are
kept fixed. Demanding smoothness of the metric around the
horizon implies that the lapse and shift are given by N ¼
κ ¼ 2πβ−1 andN a ¼ 0, where inverse temperature β is the
Euclidean time period. For the BMS-like boundary con-
ditions the chemical potentials (11) are fixed as N ðsÞ ¼
ð2π=βÞ½ðrþ 1ÞPðsÞ�−½r=ðrþ1Þ� and thus, the first law is
fulfilled as expected δS ¼ βδHðsÞ, where the variation of
the total Hamiltonian includes the internal energy, as well
as work terms. For the Heisenberg-like boundary condi-
tions, the chemical potentials are given by N H ¼ 2πβ−1,
N a

H ¼ 0 and the first law reads δS ¼ βδHH. Note that in
the latter case, as well as for s ¼ 0, temperature T ¼ β−1 is
state independent.
Kerr black hole example.—Our results can be applied to

arbitrary nonextremal black holes in diverse dimensions,
for instance, black holes with cosmological constant or
NUT charge. Here we give the essentials for the most
interesting black hole, nonextremal Kerr [88]. Since the
BMS-like generators are composites of the Heisenberg-like
ones, it is enough to perform the analysis in the latter case.
For this choice we have mixed boundary conditions that
describe how the Kerr black hole interacts with a thermal
bath: the metric component gtt is fixed, the metric compo-
nent gtρ is irrelevant, and the metric components gta are
allowed to fluctuate in a state-dependent way. Translated to
Maxwell’s theory these boundary conditions mean that the
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black hole horizon behaves like a conductor only with
respect to gtt, but not with respect to gta. The near horizon
Heisenberg-like generators for Kerr black holes with
event or inner horizon radii r� are given by (θ ∈ ½0; πÞ,
φ ∼ φþ 2π),

P¼ rþðrþþ r−Þ
8πG

sinθ;

J H
a ¼ δφar−

r−ðr− −rþÞcos2 θ− rþð3rþþ r−Þ
2

ffiffiffiffiffiffiffiffiffiffi
rþr−

p ðrþþ r− cos2 θÞ2
sin2 θ: ð22Þ

P only has a monopole contribution (in the sense that it is
proportional to the two-dimensional volume factor sin θ),
while J H

a only have a coexact part, J H
a ¼ εa

b∂bψ ,
where ψ ¼ 2 arctanU þ ½ðrþ − r−Þ=ðrþ þ r−Þ�UwithU ¼ffiffiffiffiffiffiffiffiffiffiffiffi
r−=rþ

p
cos θ. The field strength defined below (18b) is

nonzero, Fab ≠ 0, but the flux integrated over the horizon
vanishes,

R
H F ¼ 0. Further details and a generalization to

Kerr black holes with NUT charges (which introduces fluxesR
H F ≠ 0) can be found in Ref. [91].
Comments and further developments.—In the present

work we focused on nonextremal black hole horizons. Our
results also apply to cosmological horizons. Indeed, ρ ¼ 0
in Eq. (2) could be the observer horizon associated with a
cosmological de Sitter patch. It is worthwhile to apply our
analysis to cosmology and study possible consequences for
cosmic perturbation theory and hence cosmological observ-
ables with soft hair. Our near horizon charges could be
relevant in the derivation of cosmological consistency
relations [110,111] or for the infinite set of Ward identities
of the adiabatic modes [112].
An interesting generalization is to include matter or

gravitational wave fluxes through the horizon, allowing a
wider class of configurations, including nonstationary
black holes. Such an analysis may pave the way to address
Hawking radiation and the information paradox.
While we focused on matterless Einstein gravity, results

from three dimensions [53,87,113–119] suggest that the
BMS-like and Heisenberg-like algebras are universal and
apply also to general relativity with matter, higher deriva-
tive theories, and possibly other modifications of Einstein
gravity. It could be rewarding to verify (or falsify) this
claim by considering such examples.
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