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We study the quantum Fisher information (QFI) and, thus, the multipartite entanglement structure of
thermal pure states in the context of the eigenstate thermalization hypothesis (ETH). In both the canonical
ensemble and the ETH, the quantum Fisher information may be explicitly calculated from the response
functions. In the case of the ETH, we find that the expression of the QFI bounds the corresponding
canonical expression from above. This implies that although average values and fluctuations of local
observables are indistinguishable from their canonical counterpart, the entanglement structure of the state is
starkly different; with the difference amplified, e.g., in the proximity of a thermal phase transition. We also
provide a state-of-the-art numerical example of a situation where the quantum Fisher information in a
quantum many-body system is extensive while the corresponding quantity in the canonical ensemble
vanishes. Our findings have direct relevance for the entanglement structure in the asymptotic states of
quenched many-body dynamics.
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Introduction.—Thermalization is a phenomenon in
many-body physics that occurs with a high degree of
universality [1]. The question of how and why thermal-
ization emerges from unitary quantum time evolution was
posed even in the inception of quantum theory by some of
its founding fathers [2–4]. Nature shows us that the
evolution of a pure, thermally isolated system typically
results in an asymptotic state that is indistinguishable from
a finite temperature Gibbs ensemble by either local or linear
response measurements. One predictive framework for
understanding thermalization from quantum dynamics is
the eigenstate thermalization hypothesis (ETH). Inspired by
early works by Berry [5,6], later formulated by Deutsch [7],
the ETH was fully established by Srednicki as a condition
on matrix elements of generic operators Ô in the energy
eigenbasis [8–10]. Subsequently, the ETH has motivated a
considerable body of numerical work over the past decade
[11–13]. Far from being an academic issue, thermalization
in closed quantum systems is now regularly scrutinized in
laboratories worldwide where advances in the field of
ultracold atom physics have allowed for probing quantum
dynamics on unprecedented timescales in condensed matter
physics [12,14–16].
Whenever the ETH is satisfied, it is difficult to contrast

the coherence of a pure state with that of a statistical
mixture by means of standard measurements. Therefore, a
question that naturally comes to mind is, Will pure state
dynamics possess detectable features beyond thermal
noise? This question, posed recently by Kitaev [17] in
the context of black-hole physics, lead him to suggest the
study of a peculiar type of out-of-time-order correlations

(OTOCs), originally introduced by Larkin and Ovchinikov
[18]. This object, as a result of a nested time structure,
detects quantum chaos and correlations beyond thermal
ones. It was recently shown [19,20] that OTOCs are
controlled by correlations beyond the ETH. Despite its
promising features, the interpretation of the connection
between the OTOCs and the underlying quantum state
dynamics is, in general, complex.
The purpose of this Letter is to show that the task of

discriminating a pure state that “looks” thermal from a true,
thermal Gibbs density matrix might be better achieved by a
different physical quantity; the quantum Fisher information
(QFI) [21–23], a quantity of central importance in metrol-
ogy [24,25] and entanglement theory [26,27]. The first
observation of our work is that the QFI computed in the
eigenstates of the Hamiltonian FETH (or in the asymptotic
state of a quenched dynamics), and the one computed in the
Gibbs state at the corresponding inverse temperature β,
FGibbs [28,29], satisfy the inequality FETH ≥ FGibbs, where
the equality holds at zero temperature. By computing both
terms, we quantify the difference. The corresponding
multipartite entanglement structure, as obtained from the
Fisher information densities fQ ¼ F=N, is in stark con-
trast. For example, in systems possessing finite temperature
phase transitions, we argue that FETH diverges with system
size at critical points (implying extensive multipartiteness
of entanglement in the pure state), while it is only finite in
the corresponding Gibbs ensemble [28–30].
The second main result in this work is numerical. The

explicit calculation of FETH in a nonintegrable model is an
arduous task as it involves full diagonalization and data
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processing of off-diagonal matrix elements which expo-
nentially increase with system size. We use state-of-the-art
and highly optimized exact diagonalization and data sorting
routines to extract the universal features of these off-
diagonal matrix elements, in order to compute the relevant
correlation functions and the corresponding QFI densities.
We study both FETH and FGibbs in the XXZ model with
integrability breaking staggered field, unravelling the
interesting behavior of these quantities.
ETH and linear response.—ETH ansatz for the matrix

elements of observables in the eigenbasis of the
Hamiltonian, is formally stated as [10,13]

Onm ¼ OðĒÞδnm þ e−SðĒÞ=2fÔðĒ;ωÞRnm; ð1Þ

where Ē ¼ ðEn þ EmÞ=2, ω ¼ Em − En, SðĒÞ is the micro-
canonical entropy and Rnm is a random variable with zero
average and unit variance. Both OðĒÞ and fÔðĒ;ωÞ are
smooth functions of their arguments. In particular, OðĒÞ is
the microcanonical average in a shell centered around
energy Ē. Crucially, through the off-diagonal matrix ele-
ments, the function fÔðĒ;ωÞ can be extracted, allowing for
the explicit calculation of nonequal correlation functions in
time. The response function and the symmetrized noise are
defined respectively as χÔðt1;t2Þ≔−iθðt1−t2Þh½Ôðt1Þ;
Ôðt2Þ�i and SÔðt1;t2Þ≔hfÔðt1Þ;Ôðt2Þgi−2hÔðt1ÞihÔðt2Þi.
The expectation value of these correlation functions can be
taken with respect to a single energy eigenstate ĤjEi ¼
EjEi and Fourier transformed with respect to the time
difference to be expressed in the frequency domain. For
local operators or sums of local operators, the spectral
function Im½χÔðωÞ� ¼ −χ00

Ô
ðωÞ and SÔðωÞ can be approxi-

mated imposing the ETH [10,13]. In the thermodynamic
limit they read

χ00
Ô
ðωÞ ≈ 2π sinh

�
βω

2

�
jfÔðE;ωÞj2; ð2Þ

SÔðωÞ ≈ 4π cosh

�
βω

2

�
jfÔðE;ωÞj2: ð3Þ

These relations satisfy the fluctuation dissipation theorem
(FDT) SÔðωÞ ¼ 2 cothðβω=2Þχ00

Ô
ðωÞ. In this context, the

inverse temperature is given by the thermodynamic defi-
nition β ¼ ∂SðEÞ=∂E and it corresponds to the canonical
temperature at the same average energy E ¼ hEjĤjEi ¼
TrðĤe−βĤÞ=Z.
Quantum Fisher information and linear response.—

There has been some interest in relating the ETH to the
bipartite entanglement entropy [31–33], here we apply
the ETH to the quantum Fisher information F ðÔÞ.
This quantity was introduced to bound the precision
of the estimation of a parameter ϕ, conjugated to an
observable Ô using a quantum state ρ̂, via the so-called

quantum Cramer-Rao bound Δϕ2≤1=MF ðÔÞ, whereM is
the number of independent measurements made in the
protocol [25].
Most importantly, the QFI has key mathematical proper-

ties [22,25,34,35], such as convexity, additivity, monoto-
nicity and it can be used to probe the multipartite
entanglement structure of a quantum state [26,27]. If, for
a certain Ô, the QFI density satisfies

fQðÔÞ ¼ F ðÔÞ
N

> m; ð4Þ

then, at least (mþ 1) parties in the system are entangled
(with 1 ≤ m ≤ N − 1 a divisor of N). In particular, if
N − 1 ≤ fQðÔÞ ≤ N, then the state is called genuinely
N-partite entangled. In general, different operators Ô lead
to different bounds and there is no systematic method
(without some knowledge on the physical system [28,36])
to choose the optimal one, which will typically be an
extensive sum of local operators. For a general mixed state
described by the density matrix ρ ¼ P

n pnjEnihEnj, it was
shown that [34]

F ðÔÞ ¼ 2
X
n;n0

ðpn − pn0 Þ2
pn þ pn0

jhEnjÔjEn0 ij2≤ 4hΔÔ2i; ð5Þ

with hΔÔ2i ¼ Trðρ̂Ô2Þ − Trðρ̂ ÔÞ2. The equality holds in
the case of pure states ρ̂ ¼ jψihψ j.
Let us now contrast the QFI computed on a thermody-

namic ensemble with the one of a single energy eigenstate
for an operator satisfying the ETH. When computed on a
canonical Gibbs state with pn ¼ e−βEn=Z in Eq. (5), it was
shown that [28]

FGibbsðÔÞ ¼ 2

π

Z þ∞

−∞
dω tanh

�
βω

2

�
χ00
Ô
ðωÞ: ð6Þ

The same result holds in the microcanonical ensemble [37].
If in contrast one considers a pure eigenstate at the same
temperature, i.e., with energy E ¼ TrðĤe−βĤ=ZÞ compat-
ible with the average energy of a canonical state in the
system, the QFI is

FETHðÔÞ ¼ 4hEjΔÔ2jEi ¼
Z þ∞

−∞

dω
π

SÔðωÞ

¼ 2

π

Z þ∞

−∞
dω coth

�
βω

2

�
χ00
Ô
ðωÞ; ð7Þ

where SÔðωÞ in the previous equation is determined
by the function fÔðE;ωÞ appearing in Eq. (2) as described.
Since SÔðωÞ evaluated explicitly from the ETH is equiv-
alent to its canonical counterpart, then the following
result holds:
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FETHðÔÞ ≥ FGibbsðÔÞ: ð8Þ

Notice that the variance over the Gibbs ensemble, that
already bounds the corresponding QFI through Eq. (5), also
bounds from above FETH, as discussed below.
This analysis has immediate consequences for the QFI

and the entanglement structure, of asymptotic states in out-
of-equilibrium unitary dynamics. In this framework, the
expectation value of time dependent operators OðtÞ ¼
hψ jÔðtÞjψi (or of the correlation functions defined above)
are taken with respect to an initial pure state jψi, which is
not an eigenstate of the Hamiltonian Ĥ. Provided that the
QFI attains an asymptotic value at long times F∞, taking
the long-time average [46], whenever there are no degen-
eracies or only a subextensive number of them, we have

that F ðÔÞ ¼ F∞ðÔÞ ¼ 4hΔÔ2iDE with h·iDE ¼ Trðρ̂DE·Þ
[39,40], and the diagonal ensemble defined as ρ̂DE ¼P jcnj2jEnihEnj with cn ¼ hψ jEni. We remark that, since
the out-of-equilibrium global state is pure, F∞ðÔÞ is given
by the variance of Ô over the diagonal ensemble which is
different from the QFI computed on the state ρ̂DE using
Eq. (5). See Ref. [38] for the details on the out-of-
equilibrium setting.
For sufficiently chaotic Hamiltonians, the initial state jψi

considered is usually amicrocanonical superposition around
an average energy E¼hψ jĤjψi with variance δ2E ¼
hψ jĤ2jψi − hψ jĤjψi2, i.e., jcnj2 has a narrow distribution
around E with small fluctuations δ2E=E2 ∼ 1=N [13].
Then it follows hΔÔ2iDE ¼ hEjΔÔ2jEi þ ð∂O=∂EÞ2δ2E,
where the first term represents fluctuations inside each
eigenstate—computed before in Eq. (7)—and the second
is related to energy fluctuations [38]. This observation,
together with the bound, Eq. (8), leads to

F∞ðÔÞ ≥ FETHðÔÞ ≥ FGibbsðÔÞ; ð9Þ

where the equality holds in the low temperature limit
T → 0. This also implies that 4hΔÔ2iGibbs ≥ FETHðÔÞ
[47]. These expressions set a hierarchy in the entanglement
content of “thermal states” at the same temperature, yet
of different nature (mixed or pure). Furthermore, via
Eqs. (6) and (7), one can quantify this difference via
ΔF ¼ FETH − FGibbs ¼ 1=π

R
dωSÔðωÞ=cosh2ðβω=2Þ.

Multipartite entanglement at thermal criticality.—The
major difference between the ETH and Gibbs multipartite
entanglement can be appreciated at critical points of
thermal phase transitions, where Ô in Eq. (5) is the order
parameter of the theory. While it is well known that the QFI
does not witness divergence of multipartiteness at thermal
criticality, i.e., FGibbs=N ∼ const [28,29], on the other
hand, the ETH result obeys the following critical scaling
with the system size N:

fETHQ ∼
FETH

N
∼ Nγ=ðνdÞ; ð10Þ

where γ and ν are the critical exponents of susceptibility
and correlation length of the thermal phase transition
respectively and d is the dimensionality of the system [48].
Evaluation.—We now turn to the evaluation of Eq. (2) in

the context of a physical system with a microscopic
Hamiltonian description. Consider the anisotropic spin-1

2

Heisenberg chain, also known as the spin-1
2
XXZ chain,

with the Hamiltonian given by (ℏ ¼ 1):

ĤXXZ ¼
XN−1

i¼1

½ðσ̂xi σ̂xiþ1 þ σ̂yi σ̂
y
iþ1Þ þ Δσ̂zi σ̂

z
iþ1�; ð11Þ

where σ̂νi , ν ¼ x, y, z, correspond to Pauli matrices in
the ν direction at site i in a one-dimensional lattice with
N sites defined with open boundary conditions (OBCs).
In Eq. (11),Δ corresponds to the anisotropy parameter. The
spin-1

2
XXZ chain corresponds to one of the canonical

integrable models. We now add a strong integrability
breaking perturbation in the form of a staggered magnetic
field across the chain, with the Hamiltonian defined as

ĤSF ¼ ĤXXZ þ b
X
ieven

σ̂zi ; ð12Þ

where b is the strength of the staggered magnetic field.
Equation (12) is the Hamiltonian of the staggered field
model. This model is quantum chaotic with Wigner-Dyson
level spacing statistics and diffusive transport [49].
The models described before commute with the total
magnetization operator in the z direction, ½ĤXXZ;

P
i σ̂

z
i � ¼

½ĤSF;
P

i σ̂
z
i � ¼ 0 and are, therefore, Uð1Þ symmetric. Even

with OBCs, parity symmetry is present in the system. We
break this symmetry by adding a small perturbation δσ̂z1 on
the first site. To evaluate our results in the canonical
ensemble and in the context of the ETH, we proceed with
the full diagonalization of ĤSF in the largest Uð1Þ sector, in
which

P
ihσ̂zi i ¼ 0. We focus on the total staggered mag-

netization Ô ¼ P
ið−1Þiσ̂zi as our extensive observable, and

compute all the matrix elements of Ô in the eigenbasis of the
Hamiltonian ĤSF (see Ref. [38] for an evaluation on a local,
nonextensive observable).
Our starting point is to evaluate the expectation value of

Ô in the canonical ensemble and compare it with the ETH
prediction. In the thermodynamic limit, a single eigenstate
jEi with energy E suffices to obtain the canonical pre-
diction: hÔi ¼ hEjÔjEi ¼ TrðÔe−βĤÞ=Z, with an inverse
temperature β that yields an average energyE. For finite-size
systems, we instead focus on a small energy window
centered around E of width 0.1ϵ in order to average
eigenstate fluctuations, where ϵ is the bandwidth of the
Hamiltonian for a givenN. Figure 1 shows hÔi as a function
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of temperature for two different system sizes, including
N ¼ 20, the largest system we have access to (Hilbert space
dimensionD¼N!=½ðN=2Þ!ðN=2Þ!� ¼ 184756). The results
exhibit the expected behavior predicted from the ETH for
finite-size systems: the thermal expectation value is well
approximated away from the edges of the spectrum (low
temperature, section highlighted in gray on Fig. 1), and,
moreover, the canonical expectation value is better approxi-
mated as the system size increases.
We now turn to the evaluation of FETH and FGibbs. The

task requires us to either compute SÔðE;ωÞ or χ00ÔðE;ωÞ in
each respective framework. For the former, in the context
of ETH, we can employ Eq. (2) which depends only on
fÔðE;ωÞ. As before, we focus on a small window of
energies and extract all the relevant off-diagonal elements of
Ô in the eigenbasis of ĤSF. Fluctuations are then accounted
for by computing a bin average over small windows δω,
chosen such that the resulting average produces a smooth
curve [see Ref. [38] for a detailed description on the
extraction of e−SðEÞ=2fÔðE;ωÞ] [41,50]. The procedure
leads to a smooth function e−SðEÞ=2fÔðE;ωÞ, in which
the first factor is a constant value with respect to ω. The
entropy factor can be left undetermined in our calcu-
lations if we normalize the curve by the sum rule shown
in Eq. (7), computed in this case from the ETH
prediction of the expectation value of hΔÔ2i. In the
context of the canonical ensemble, SÔðωÞ can be explic-
itly evaluated by computing the thermal expectation value
of the nonequal correlation function in the frequency
domain [38].
In Fig. 2 we show SÔðωÞ for both the canonical ensemble

for T ¼ 5 and the corresponding ETH prediction normal-
ized by the sum rule mentioned before. The sum rule is

evaluated from the expectation values computed within
both the canonical ensemble and ETH, correspondingly. It
can be observed that the main features of the response
function can be well approximated from the corresponding
ETH calculation. For this particular case, however, the

FIG. 1. Expectation value of the staggered magnetization as a
function of temperature in both the canonical ensemble and the
corresponding ETH prediction for and N ¼ 16 (left) N ¼ 20
(right). Gray area highlights the low temperature regime, close to
the edges of the spectrum where the ETH prediction gives the
largest fluctuations.

FIG. 2. Response function SÔðωÞ computed directly from
the ETH and in the canonical ensemble for N ¼ 16 (inset)
and N ¼ 20 (main) for T ¼ 5.

FIG. 3. The quantum Fisher information and the corresponding
density for different system sizes as a function of temperature in
both the canonical ensemble (FGibbs) and corresponding ETH
prediction (FETH). At infinite temperature the ETH predicts the
presence of multipartite entanglement while there is none in the
canonical ensemble.
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approximation is only marginally improved by increasing
the system size. This behavior is expected given that overall
fluctuations for extensive observables carry an extensive
energy fluctuation contribution, as mentioned before [13].
The previous analysis unravels the agreement between the
thermal expectation values of nonequal correlation func-
tions in time and those predicted by the ETH. From these
results, as SÔðωÞ (and, consequently, χ00ÔðωÞ from the FDT)
is well approximated by means of the ETH, the inequality
in Eq. (8) is satisfied.
Finally, we compute the QFI for Ô in our model within

both contexts: FETH and FGibbs. The results are shown in
Fig. 3. The fluctuations in the ETH calculation of FETH
are inherited from the fluctuations of the predicted expect-
ation value of hΔÔ2i, which, as expected for finite-size
systems, decrease away from the edges of the spectrum.
Both predictions for the QFI, canonical and the ETH, are
equivalent at vanishing temperatures. Remarkably, the QFI
predicted from the ETH is finite at infinite temperature,
while the QFI from the canonical ensemble in this regime
vanishes. We emphasize that although the QFI can be used
in order to infer the structure of multipartite entanglement,
i.e., the number of subsystems entangled, it is not a measure
of these correlations (in the mathematical sense of the
formal theory of entanglement [51]).
Conclusions.—We have shown that the QFI detects

the difference between a pure state satisfying the ETH
and the Gibbs ensemble at the corresponding temperature.
The extension of these results to integrable systems,
described by the generalized Gibbs ensemble, is the subject
of current work. Even though it is expected that global
observables could be sensitive to the difference between
pure states and the Gibbs ensemble [52], several operators
including the sum of local ones and the nonlocal entangle-
ment entropy appear to coincide at the leading order with
the thermodynamic values when the ETH is applied [52–
56]. In this work, the difference between the ETH and
Gibbs multipartite entanglement, which can be macro-
scopic in proximity of a thermal phase transition, is
observed numerically in an XXZ chain with integrability
breaking term, when the temperature grows toward infinity.
The consequences of this could be observed in ion trap and
cold-atom experiments via phase estimation protocols on
pure state preparations evolved beyond the coherence time
[38]. Our result suggests that although at a local level all
thermal states look the same, a quantum information
perspective indicates that there are many ways to be
thermal.
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Rev. A 85, 022321 (2012).

[27] G. Tóth, Phys. Rev. A 85, 022322 (2012).
[28] P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Nat. Phys.

12, 778 (2016).
[29] M. Gabbrielli, A. Smerzi, and L. Pezzè, Sci. Rep. 8, 15663
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