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Even though the eigenstate thermalization hypothesis (ETH) may be introduced as an extension of the
random matrix theory, physical Hamiltonians and observables differ from random operators. One of the
challenges is to embed local integrals of motion (LIOMs) within the ETH. Here we make steps towards a
unified treatment of the ETH in integrable and nonintegrable models with translational invariance.
Specifically, we focus on the impact of LIOMs on the fluctuations and structure of the diagonal
matrix elements of local observables. We first show that nonvanishing fluctuations entail the presence of
LIOMs. Then we introduce a generic protocol to construct observables, subtracted by their projections on
LIOMs as well as products of LIOMs. The protocol systematically reduces fluctuations and/or the structure
of the diagonal matrix elements. We verify our arguments by numerical results for integrable and
nonintegrable models.
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Introduction.—Quantum simulators based on, e.g., quan-
tum gases [1–5] provide an experimental platform to
address a fundamental question of quantum mechanics,
i.e., whether and how an initially nonequilibrium system
reaches a thermal state [6–15]. The eigenstate thermal-
ization hypothesis (ETH) is one of the main theoretical
concepts that explains thermalization of local observables
[16] in macroscopic quantum systems [10,17–21].
The ETH is most commonly expressed by the Srednicki

ansatz [19] for the matrix elements of local observables
Anm ¼ hnjÂjmi in the basis of eigenstates fjnig of the
Hamiltonian Ĥ (see, e.g., Refs. [10,11] for a review). The
first part of the ansatz states that the diagonal matrix
elements are smooth functions of energies, Ann ≃ AðEnÞ,
and hence AðEÞ coincides with the microcanonical average
of Â at energy E. The second part states that the off-
diagonal matrix elements Am≠n and the fluctuations of the
diagonal elements δAnn ¼ Ann − AðEnÞ (see Fig. 1 and
Refs. [22–24]) decay exponentially with system size.
Strong theoretical evidence supports validity of the ETH
in various generic, nonintegrable models [20–48]. An
important property of quantum systems that thermalize
for any initial condition is that all eigenstates in the bulk of
the spectrum satisfy the ETH [23,39,45].
Currently, a great scientific interest is devoted to gain

deeper insight into nonergodic behavior of quantum many-
body systems, along with the conditions for the ETH
breakdown [11]. The most common evidence of the latter is
slower-than-exponential decay of the fluctuations δAnn.
Indeed, this has been observed for a majority of eigenstates
in clean integrable models [49–52] and strongly disordered

finite systems [53–56], and for a vanishing fraction of
eigenstates in some other classes of models [57–63]. This
raises a question whether a modified version of the ETH, or
a completely new theory, is necessary to describe properties
of nonergodic quantum dynamics.
The goal of this Letter is to establish a unified frame-

work of eigenstate thermalization that could be applied
to both integrable and nonintegrable models with transla-
tional invariance. Previous works on integrable models in
the context of the generalized ETH [50,51,64,65], the
quench action approach [66–72], and the weak ETH
[73–75], support the view that the ETH is violated due
to the presence of local integrals of motion (LIOMs).

FIG. 1. Sketch of the diagonal matrix elements Ann (dots) and
the smooth function AðEnÞ (line). Here, Â is the normalized
kinetic energy of a nonintegrable model (15) at L ¼ 21. Arrows
denote two properties studied here: Structure, i.e., AðEnÞ ≠ const,
and fluctuations of Ann above AðEnÞ.

PHYSICAL REVIEW LETTERS 124, 040603 (2020)

0031-9007=20=124(4)=040603(8) 040603-1 © 2020 American Physical Society

https://orcid.org/0000-0003-1945-1437
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.040603&domain=pdf&date_stamp=2020-01-29
https://doi.org/10.1103/PhysRevLett.124.040603
https://doi.org/10.1103/PhysRevLett.124.040603
https://doi.org/10.1103/PhysRevLett.124.040603
https://doi.org/10.1103/PhysRevLett.124.040603


Nevertheless, the quantitative role of integrals of motion in
the ETH remains widely unexplored.
As a first result, we show that a specific form of

fluctuations, δAnn, which signals the violation of the
ETH, also entails the presence of LIOMs. This motivates
us to quantify the notion of similarity of a local observable
to LIOMs via its projections on LIOMs. As a second result,
we then outline a generic procedure, applicable to both
integrable and nonintegrable models, in which observables
are subtracted by their projections on LIOMs and products
of LIOMs. This procedure reduces fluctuations of the
diagonal matrix elements order by order, which we also
verify numerically.
Preliminaries.—We study translationally invariant (TI)

chains with L sites and discuss traceless TI observables,
Â¼1=

ffiffiffiffi
L

p P
L
j¼1 âj, where âj is the density of Â. The choice

of the prefactor 1=
ffiffiffiffi
L

p
is uncommon but convenient since it

yields the operators normalized, i.e., 0<limL→∞kÂk<
∞. The Hilbert-Schmidt norm kÂk is defined as

kÂk2 ¼ hÂ Âi ¼ 1

Z

X

n

hnjÂ2jni ¼ 1

Z

X

n;m

jAnmj2; ð1Þ

whereZ is the Hilbert space dimension.We introduce averag-

ing over infinite time window, ˆ̄A¼limτ→∞
R
τ
0dtÂðtÞ=τ, which

projects out the off-diagonal matrix elements of the observ-

able Â such that ˆ̄A ¼ P
n Annjnihnj. (For simplicity we

assumed a nondegenerate energy spectrum; see the
Supplemental Material [76] for a generalization to a degen-
erate spectrum.)Using the normof the time-averaged operator
we define the stiffness

σ2A ¼ h ˆ̄A ˆ̄Ai ¼ 1

Z

X

n

ðAnnÞ2: ð2Þ

Nonvanishing stiffness signals that the correlation function
hÂðtÞÂi remains nonzero for arbitrarily long t, hence it
indicates absence of thermalization. Finally, we introduce
fluctuations of diagonal matrix elements above their micro-
canonical average AðEnÞ [22,74],

Σ2
AðΔÞ ¼

1

ZΔ

X

En∈Δ
½Ann − AðEnÞ�2; ð3Þ

where ZΔ is the number of eigenstates in the energy window
Δ. If fluctuations are sampled over all eigenstates, then ZΔ →
Z and Σ2

AðΔÞ → Σ2
A.

An important feature beyond predictions of random
matrix theory is that in general AðEnÞ ≠ const. In other
words, Ann show some structure [10,15], e.g., the slope of
AðEnÞ is nonzero as shown in Fig. 1. As a consequence,
quantitative measures of fluctuations in finite systems,
defined within energy windows that scale polynomially

with system size, may be ambiguous (even though, e.g.,
subtracting a linear fit of Ann in a sufficiently small energy
window already reduces fluctuations [24]). The role of
AðEnÞ is to remove the structure of the diagonal elements,
if present. For observables with no structure, i.e., for
AðEnÞ ¼ 0, the stiffness σ2A becomes identical to Σ2

A.
Moreover, we note a property used throughout the Letter,
namely,Σ2

A increases if the microcanonical averageAðEnÞ is
replaced by other smooth function fðEnÞ,

Σ2
A ≤

1

Z

X

n

½Ann − fðEnÞ�2: ð4Þ

The choice of observable normalization (1) and the use
of stiffness (2) is physically justified by recalling the results
for ballistic particle transport in one-dimensional integrable
models. The ballistic transport shows up as nonvanishing
charge stiffness σ2I > 0 in the thermodynamic limit [77–
94], defined for the observable Î ¼ 1=

ffiffiffiffi
L

p P
i |̂i, where |̂i is

the charge current flowing between sites i and iþ 1. Since
the microcanonical average IðEnÞ vanishes due to time-
reversal symmetry, i.e., the observable Î has no structure,
the nonvanishing stiffness σ2I also reflects nonvanishing
fluctuations Σ2

I and the breakdown of the ETH [30].
We introduce a measure of violation of the ETH in

integrable systems: fluctuations Σ2
AðΔÞ of a normalized,

traceless TI observable Â do not vanish,

lim
L→∞

Σ2
AðΔÞ > 0; ð5Þ

for an arbitrary energy window Δ. In the Supplemental
Material [76] we verify Eq. (5) for a structureless operator
in an interacting integrable model.
Finally, we note that the majority of previous studies in

integrable models focused on intensive observables Âint ¼
Â=

ffiffiffiffi
L

p
[49–51,64,73,74]. Their fluctuations typically scale

as Σ2
Aint ∼ 1=L. However, we argue that vanishing of Σ2

Aint

can be viewed as a consequence of the vanishing operator
norm, kÂintk2 ∼ 1=L. In fact, if AðEnÞ ¼ 0, Eqs. (1) and (3)
imply Σ2

Aint ≤ kÂintk2.
Violation of ETH entails existence of LIOMs.—Violation

of the ETH, as defined in Eq. (5), implies [together with
Eq. (4)] an inequality

0 <
1

Z

X

n

½Ann − fðEnÞ�2; ð6Þ

which in the thermodynamic limit holds for arbitrary
smooth function of energy fðEnÞ. We show in what follows
that Eq. (6), i.e., violation of the ETH, entails the presence
of LIOMs. We introduce a projected observable

Â⊥ ¼ Â − pAĤ; pA ¼ hÂ Ĥi
hĤ Ĥi ; ð7Þ
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and argue that the time-averaged observable ˆ̄A⊥ is a LIOM,
orthogonal to the Hamiltonian Ĥ.
We first recall that any time-averaged operator is con-

served (but not necessarily local), and that time averaging is

an orthogonal projection h ˆ̄A B̂i ¼ hÂ ˆ̄Bi ¼ h ˆ̄A ˆ̄Bi, where
hÂ B̂i is the Hilbert-Schmidt scalar product of operators Â

and B̂, see Eq. (1). Then, orthogonality of ˆ̄A⊥ to Ĥ follows
from orthogonality of Â⊥ to Ĥ in construction of Eq. (7),

since hĤ ˆ̄A⊥i ¼ h ˆ̄HÂ⊥i ¼ hĤÂ⊥i ¼ 0.
The key step is to show locality of ˆ̄A⊥. In general, testing

locality of integrals of motion via analyzing their supports
is a tough problem. Unexpectedly, it is easier to relax the
constraint on strictly local LIOMs and test a broader
concept of quasilocality. An additional support for such
generalization is that quasilocal LIOMs play an important
role in the integrable XXZ chains [95–101]. A conserved
operator Q̂α is local or quasilocal when hÂQ̂αi2=hQ̂αQ̂αi >
0 for some normalized TI and local observable Â [101].

Using the identity h ˆ̄A⊥ ˆ̄A⊥i¼ hÂ⊥ ˆ̄A⊥i¼ hðÂ−pAĤÞ ˆ̄A⊥i¼
hÂ ˆ̄A⊥i we get

hÂ ˆ̄A⊥i2
h ˆ̄A⊥ ˆ̄A⊥i

¼ h ˆ̄A⊥ ˆ̄A⊥i ¼ σ2A⊥ : ð8Þ

Inequality (6) implies that the stiffness of Â⊥ is nonzero,

σ2A⊥ ¼ h ˆ̄A⊥ ˆ̄A⊥i ¼
1

Z

X

n

ðAnn − pAEnÞ2 > 0; ð9Þ

hence the conserved operator ˆ̄A⊥ is local or quasilocal.
Integrable systems.—The above analysis can straight-

forwardly be extended to a model containing an orthogonal
set of LIOMs fQ̂αg, hQ̂αQ̂βi ∝ δαβ. To this end we
generalize the definition of projected observables, intro-
duced in Eq. (7), to

Â⊥ ¼ Â −
X

α

pAαQ̂α; pAα ¼
hÂQ̂αi
hQ̂αQ̂αi

: ð10Þ

The observables Â⊥ and ˆ̄A⊥ are orthogonal to all LIOMs

fQ̂αg since h ˆ̄A⊥Q̂βi¼ hÂ⊥Q̂βi¼ hÂQ̂βi−pAβhQ̂βQ̂βi¼ 0,
and as a consequence, Eq. (8) is still valid. If the set of

LIOMs is complete, then the norm of ˆ̄A⊥ must vanish in the
thermodynamic limit, and hence

lim
L→∞

σ2A⊥ ¼ 0: ð11Þ

Otherwise, ˆ̄A⊥ is local (or quasilocal) and it represents an
additional LIOM which is missing in the set fQ̂αg.
So far, the main message concerns the projected oper-

ators Â⊥, which are still local operators but their stiffnesses

vanish in the thermodynamic limit. They can be con-
structed for both integrable and nonintegrable cases which
differ only by the number of LIOMs (Ĥ is typically the only
LIOM in a nonintegrable case). We conjecture that the
stiffnesses may be further reduced if operators are addi-
tionally subtracted by their projections on products of
LIOMs. Below we provide analytical and numerical
evidence for our conjecture.
Products of LIOMs in generic nonintegrable systems.—

We first study a generic system where the only LIOM is the
Hamiltonian Ĥ, and hence the only products of LIOMs are
the powers of Ĥ. We start by finding the polynomial fðEnÞ
that minimizes the right-hand side of Eq. (4). This is the
best polynomial fit to the microcanonical average AðEnÞ.
We introduce a polynomial of degree k of the Hamiltonian

Ĥ⊥k ¼ Ĥk −
Xk−1

j¼1

hĤkĤ⊥ji
hĤ⊥jĤ⊥ji

Ĥ⊥j; ð12Þ

where Ĥ⊥1 ≡ Ĥ. Such polynomials are orthogonal by
construction, hĤ⊥kĤ⊥li ∝ δk;l. Then, the central step is
to construct projected observables Â⊥k,

Â⊥k ¼ Â− f̂kðĤÞ; f̂kðĤÞ¼
Xk

j¼1

hÂĤ⊥ji
hĤ⊥jĤ⊥ji

Ĥ⊥j; ð13Þ

which can be seen as a generalized form of Eq. (10), with
Â⊥1 ≡ Â⊥. Using orthogonality of Ĥ⊥k one easily finds an
explicit form of the stiffness,

σ2A⊥k
¼ σ2A −

Xk

j¼1

rj; rj ¼
hÂĤ⊥ji2
hĤ⊥jĤ⊥ji

; ð14Þ

where the stiffness at k ¼ 1 is σ2A⊥1
≡ σ2A⊥ . In the

Supplemental Material [76] we show that fkðEnÞ ¼
hnjf̂kðĤÞjni is indeed the best polynomial fit to AðEnÞ
for a given degree k, hence limk→∞fkðEnÞ ¼ AðEnÞ.
It follows from Eq. (14) that the stiffness σ2A is bounded

from below by all rk, i.e., by the projections of Â on the kth
power of the Hamiltonian. Using a Gaussian density of
states one can show [76] that rk ∼Oð1=Lk−1Þ. Below, we
demonstrate that the stiffness σ2A may be reduced order by
order via subtracting these projections, i.e., via considering
operators Â⊥k introduced in Eq. (13), for which the leading
term of the stiffness σ2A⊥k

is at most of the order Oð1=LkÞ.
The physical picture behind our construction is that the
diagonal matrix elements of the projected observables Â⊥k
become more structureless, i.e., they become closer to the
ones typically used in the random matrix theory.
As an application, we study a nonintegrable periodic

chain of interacting spinless fermions on L sites and with
N ¼ L=3 particles,
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Ĥ¼−
XL

j¼1

ðeiϕĉ†jþ1ĉjþH:c:Þþ
XL

j¼1

ðV ˆ̃nj ˆ̃njþ1þW ˆ̃nj ˆ̃njþ2Þ:

ð15Þ
Here, n̂j ¼ ĉ†j ĉj, ˆ̃nj ¼ n̂j − 1=3, and we set V ¼ W ¼ 1.
We remove degeneracies in all momentum sectors by
introducing a flux ϕ ¼ 2π=L and π=L for even and odd
N, respectively.
We study two observables: the generalized hopping

energy Â ¼ ð1= ffiffiffiffi
L

p ÞPjðκ̂j þ κ̂†jÞ, and the generalized
current B̂¼ð1= ffiffiffiffi

L
p ÞPj iðκ̂j− κ̂†jÞ, with κ̂j ¼ e2iϕĉ†jþ1ð1−

3n̂jÞĉj−1. Figures 2(a) and 2(c) show their diagonal matrix
elements Ann and Bnn, respectively, and the corresponding
polynomial fits fk¼LðEnÞ from Eq. (13).
The operator Â has zero projection on Ĥ, i.e., r1 ¼ 0 in

Eq. (14), and hence σ2A ¼ σ2A⊥ . However, Â has nonzero

projection on Ĥ⊥2 that includes the product Ĥ
2. Figure 2(b)

shows that this projection (r2 ∝ 1=L) approaches σ2A⊥ for
large L causing the power-law decay σ2A⊥ ∝ 1=L. After this

projection is subtracted from Â, we observe a nearly
exponential decay of σ2A⊥k

with L for k ≥ 2. In contrast

to Â, the observable B̂ has no projection on any power of
the Hamiltonian, i.e., the diagonal matrix elements have no
structure [see Fig. 2(c)], and σ2B decays exponentially with
L [see Fig. 2(d)].

Products of LIOMs in integrable systems.—We now turn
our focus to integrable models, for which the set of products
of LIOMs is much richer. The latter set should be built
iteratively, in analogy to Eq. (12), to ensure that it contains
mutually orthogonal operators. In the case of products of
two LIOMs, denoted by X̂γðα;βÞ ¼ Q̂αQ̂β − hQ̂αQ̂βi, this is
achieved by

X̂⊥γ ¼ X̂γ −
X

α

hX̂γQ̂αi
hQ̂αQ̂αi

Q̂α −
Xγ−1

γ0¼1

hX̂⊥γX̂⊥γ0 i
hX̂⊥γ0X̂⊥γ0 i

X̂⊥γ0 : ð16Þ

As an example, we study a chain of hard-core bosons
(HCBs) with the Hamiltonian ĤHCB¼−

P
jðb̂†jþ1b̂jþH:c:Þ

using periodic boundaries and the onsite constraints
ðb̂†jÞ2 ¼ ðb̂jÞ2 ¼ 0, where b̂†j (b̂j) creates (annihilates) a

boson on site j. A complete set of LIOMs fQ̂αg is given by
FIG. 2. Diagonal matrix elements of observables Â and B̂ (see
text for definitions) for the generic Hamiltonian Ĥ (15). Symbols
in (a) and (c) show Ann and Bnn, respectively, versus En for L ¼
21 sites in all momentum sectors, while lines represent fk¼LðEnÞ
(13). (b) and (d) Stiffnesses σ2A and σ2B, respectively, and the
corresponding stiffnesses σ2A⊥k

and σ2B⊥k
, where σ2A⊥1

≡ σ2A⊥ . In
(b) we also plot the projection r2 (14). Solid and dashed lines are
guides to the eye, given by polynomial (∼1=L) and exponential
(∼e−L=2.2) functions, respectively.

FIG. 3. Diagonal matrix elements of Ĵ and the projected
observables Ĵ⊥ and Ĵ⊥2, for the integrable HCBs Hamiltonian
ĤHCB that includes all particle sectors (see text for details). (a),(c),
and (e) Jnn, ðJ⊥Þnn and ðJ⊥2Þnn, respectively, for L ¼ 18 (bright
blue symbols) and L ¼ 12 (dark red symbols). (b),(d), and
(f) Stiffnesses σ2J , σ

2
J⊥ ≡ σ2J⊥1

(for k ¼ 1) and σ2J⊥2
(for k ¼ 2),

respectively. The insets show histograms of the corresponding
distributions of the matrix elements. Lines in (b) and (d) are the
functions 1=4þ ð3=4ÞL−1 and ð3=4ÞL−1, respectively.
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noninteracting spinless fermions onto which the HCBs are
mapped (see the Supplemental Material [76] for details).
We construct a two-body structureless observable

Ĵ ¼ ffiffiffiffiffiffiffiffiffiffiffiffið2=LÞp P
j ðib̂†jþ1n̂jb̂j−1 þ H:c:Þ, for which the

microcanonical average vanishes, JðEnÞ ¼ 0. Figure 3(a)
shows the diagonal matrix elements Jnn for two system
sizes L, and Fig. 3(b) shows that the stiffness σ2J extrap-
olates to a nonzero value in the thermodynamic limit
L → ∞. These results signal violation of the ETH as stated
in Eq. (5) and the existence of LIOMs.
We then construct a projected observable Ĵ⊥ according

to Eq. (10) using a complete set of LIOMs. Figure 3(c)
reveals that the diagonal matrix elements of ðJ⊥Þnn are
reduced when compared to Jnn in Fig. 3(a). Moreover,
Fig. 3(d) shows a vanishing stiffness σ2J⊥ ∝ 1=L, in agree-
ment with Eq. (11).
Finally, we construct the projected observable Ĵ⊥2,

which is a generalization of Eq. (13) for k ¼ 2 to include
all the possible products of two LIOMs X̂⊥γ from Eq. (16).
Remarkably, all the diagonal matrix elements of ðJ⊥2Þnn
are exactly zero already in finite systems, as shown in
Figs. 3(e) and 3(f). This reveals a special instance of the
ETH, where the diagonal matrix elements form a well-
defined function with zero fluctuations at any system size.
Conclusions.—The simplest classification of nonequili-

brium dynamics contains two classes of quantum many-
body systems: generic systems which thermalize after
sufficiently long time, and integrable systems which do
not thermalize. This difference is encoded in the diagonal
matrix elements of observables. In this Letter, we intro-
duced a quantitative framework to characterize these matrix
elements. The central concept is the similarity of observ-
ables to LIOMs quantified via their projections on LIOMs
and products of LIOMs. It can be applied to both integrable
and generic systems, with the only difference consisting of
the number and the structure of LIOMs. We thereby made
steps towards a unified treatment of the ETH in integrable
and generic quantum systems.
Previous works within the generalized ETH [50,51]

studied the notion of similarity between eigenstates for a
particular distribution of LIOMs after a quantum quench.
Here, we established a framework that is quench indepen-
dent and is based on the similarity of observables to
LIOMs. Then, the infinite-time averages of observables
are governed by the expectation values of LIOMs (and
products of LIOMs) in the initial state and by the similarity
of observables to LIOMs. So far our applications concerned
translationally invariant systems with simple forms of
LIOMs, and extensions to models with more involved
structure of LIOMs, as well as to models without trans-
lational invariance, are desired for future work.
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