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We develop a general framework to describe the thermodynamics of microscopic heat engines driven by
arbitrary periodic temperature variations and modulations of a mechanical control parameter. Within the
slow-driving regime, our approach leads to a universal trade-off relation between efficiency and power,
which follows solely from geometric arguments and holds for any thermodynamically consistent
microdynamics. Focusing on Lindblad dynamics, we derive a second bound showing that coherence
as a genuine quantum effect inevitably reduces the performance of slow engine cycles regardless of the
driving amplitudes. To show how our theory can be applied in practice, we work out a specific example,
which lies within the range of current solid-state technologies.
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The laws of thermodynamics limit the performance of
thermal machines across all length and energy scales. A
prime example is the Carnot bound on efficiency, which
applies to JamesWatt’s steam engine and recent small-scale
engines using colloidal particles [1–3], single atoms [4,5]
or engineered quantum systems [6,7] alike. Still, this bound
is mostly of theoretical value as it is typically attained only
by infinitely slow cycles producing zero power. Practical
devices operating in finite time, however, are inevitably
subject to frictional losses suppressing their efficiency.
Hence, we are prompted to ask, How much performance
has to be sacrificed for finite speed?
This question, which inspired the development of finite-

time thermodynamics in the 1970s and 1980s [8–11], is
now attracting renewed interest. Triggered by the obser-
vation that Carnot efficiency at finite power might indeed
be possible in systems with broken time-reversal symmetry
[12], recent studies discovered quantitative trade-off
relations that rule out this option for generic heat engines
[13–20]; overcoming these bounds requires exceptional
conditions like diverging power fluctuations [21–23] or
fine-tuned dissipation mechanisms leading to vanishing
relaxation times [24–27].
These results rely on stochastic models to describe the

internal dynamics of small-scale engines. Here, we pursue
an alternative strategy that builds on the framework of
thermodynamic geometry [28]. This approach replaces the
traditional thermodynamic picture, which mixes control
and response variables, with a geometric picture. The
properties of the working system are thereby encoded in
a vector potential and a Riemannian metric in the space of
control parameters, see Fig. 1. The driving protocols define
a closed path in this space and can thus be assigned an
effective flux and length. In adiabatic response, these
quantities provide measures for the two key figures of

merit: the work output and the minimal dissipation of the
underlying thermodynamic process.
The idea of using geometric concepts to describe the

thermodynamics of finite-time operations was originally
conceived for macroscopic systems and developed mainly
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FIG. 1. Four faces of a microscopic engine cycle. Upper panel:
Thermodynamic picture. The two sketches show effective pres-
sure-volume (a) and temperature-entropy (b) diagrams for a
Stirling cycle consisting of two isochoric (Λw ¼ V ¼ const)
and two isothermal (Λu ¼ T ¼ const) strokes. The enclosed
areas correspond to the generated work W and the effective
input U. Lower panel: Geometric picture. In the space of control
parametersΛu andΛw, the quasistatic workW is given by the line
integral of the thermodynamic vector potential along γ, i.e., the
flux of the corresponding effective magnetic field through the
area encircled by this path (c). In the curvilinear coordinates Λ0w
andΛ0u, which carry the thermodynamic metric, γ is distorted into
the contour γ0, whose length L provides a lower bound on the
dissipated energy (d).
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on the basis of phenomenological principles [11,28,29].
Over the last decades, this approach has been formulated on
microscopic grounds [30], linked to information-theoretic
quantities [28] and extended to classical nanoscale systems
[31], closed quantum systems far from equilibrium [32]
and, most recently, open quantum systems [33,34].
Thermodynamic geometry has thus become a powerful
tool, which, as its key application, provides an elegant way
to determine optimal control protocols minimizing the
dissipation of isothermal processes [35–39]. Yet, this
framework has neither been applied to bound the finite-
time efficiency of general microscopic engine cycles nor to
explore the impact of coherence on this figure.
In macroscopic thermodynamics, heat engines are

described as machines that generate usable work while
operating between two reservoirs, a hot one providing
energy input and a cold one acting as a sink of entropy [40].
Microscopic heat engines, however, are typically driven by
externally controlled heat sources [1–7]. This design
enables unconventional cycles with continuous temperature
profiles, which offer more freedom for optimization but
cannot be described within the two-reservoir scheme.
For a more general model for small-scale engines, we

consider a working system with tunable Hamiltonian HV
that is embedded in an environment with adjustable
temperature T. The device is operated by cyclic variations
of T and the mechanical parameter V driving the system
into a periodic state ρt; the vector Λ≡ ðT; VÞ≡ ðΛu;ΛwÞ
thereby passes through a closed path γ∶Λ ↦ Λt. Output
and input of this process can be identified as

W ¼
I
γ
pdV ¼

Z
τ

0

dtfwt _Λw
t ;

U ¼
I
γ
TdS ¼ −

Z
τ

0

dtfut _Λu
t ; ð1Þ

where τ denotes the cycle time, dots indicate time deriv-
atives, and the generalized forces,

fwt ≡pt≡−Tr½ρt∂Vt
HVt

�; fut ≡St≡−Tr½ρt lnρt�; ð2Þ

correspond to the effective pressure and the entropy of the
medium, respectively. Thus,W is the mean generated work
andU can be regarded as the uptake of thermal energy from
the heat source, i.e., the amount of energy that is available
for work production under a given temperature profile. As
illustrated in Fig. 1 (upper panel), the quantities W and U
can be determined in practice by measuring the pressure-
volume and temperature-entropy diagrams of the cycle;
such measurements have recently been reported for a
single-atom heat engine [5].
The identification ofU as the effective input provided by

the heat source can be understood from the relation

A≡U −W ¼ −
Z

τ

0

dtfμt _Λ
μ
t ¼

Z
τ

0

dtTtΣt ≥ 0; ð3Þ

which describes the energy balance of the engine [41].
Here, Σt is the total rate of entropy production, which must
be non-negative according to the second law. Hence, the
dissipated availability A describes the average loss of
energy due to finite-time driving [42]; this quantity van-
ishes in the quasistatic limit and reduces to the total
irreversible work for conventional two-temperature cycles
[43]. Note that μ ¼ w, u and summation over identical
indices is understood throughout.
The balance relation Eq. (3) shows that the ratio

ε≡W=U ≤ 1 ð4Þ
provides a proper measure for the ability of a microscopic
heat engine to avoid dissipative losses. This figure, which
we henceforth refer to as efficiency, is well defined for
arbitrary control protocols leading to positive output, i.e.,
W > 0, and reaches its maximum 1 whenever the engine
operates reversibly. Note that the conventional thermody-
namic efficiency, η≡Q=W, which depends on the gross
heat absorption per cycle,Q, admits a tight universal bound
only for two-temperature profiles, where η=ηC ≤ ε with ηC
being the Carnot factor [43].
Before moving on, it is instructive to apply our general

framework to the quasistatic regime, where the system
follows its instantaneous Gibbs state, i.e., we have

ρt ¼ ϱΛt
with ϱΛ ≡ exp½−ðHV − FΛÞ=T� ð5Þ

andFΛ denoting theHelmholtz free energy. The generalized
forces, Eq. (2), can then be expressed as fμt ¼ F μ

Λt
with

F μ
Λ ¼ −∂μFΛ. Inserting this relation into Eq. (3) shows that

the dissipationAvanishes; the efficiency, Eq. (4), thus attains
its upper bound 1. However, since the condition Eq. (5) can
be met only for infinitely long cycle times, the generated
power, P≡W=τ, also goes to zero and the engine becomes
virtually useless. Note that we focus on generic heat engines
throughout, i.e., we assume that the overall relaxation time of
the working system is finite.
Increasing the driving speed leads to finite power but

inevitably also to dissipation reducing ε. This trade-off can
be understood quantitatively in the adiabatic response
regime, where the external parameters change slowly
compared to the relaxation time of the system. Under this
condition, the thermodynamic forces, Eq. (2), and the
control rates _Λt are connected by the linear relations

fμt ¼ F μ
Λt
þ Rμν

Λt
_Λν
t ; ð6Þ

where ν ¼ w, u and the adiabatic response coefficients Rμν
Λt

depend parametrically on the driving protocols Λt [44].
The average energy loss [Eq. (3)] thus becomes
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A ¼
Z

τ

0

dtgμνΛt
_Λμ
t
_Λν
t with gμνΛ ≡ −ðRμν

Λ þ Rνμ
Λ Þ=2 ð7Þ

denoting the elements of a, possibly degenerate, metric
tensor in the space of control parameters [45]. Thus, the
Cauchy-Schwarz inequality implies

A ≥ L2=τ; where L≡
I
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνΛ dΛμdΛν

q
ð8Þ

corresponds to the thermodynamic length of the path γ.
Expanding the efficiency [Eq. (4)] to second order in the

driving rates _Λt yields ε ¼ 1 − A=W, where the quasistatic
work can be expressed as a line integral,

W ≡ −
Z

τ

0

dtFw
Λt
_Λw
t ¼ −

I
γ
Aμ

ΛdΛ
μ

with Aμ
Λ ≡ ∂μFw

ΛΛw

being the thermodynamic vector potential. Using Eq. (8)
thus yields the power-efficiency trade-off relation

ð1 − εÞðW=LÞ2 ≥ W=τ ¼ P: ð9Þ

This bound implies that the power of any heat engine
covered by our general model must vanish at least linearly
as its efficiency approaches the ideal value 1; for two-
temperature cycles, this conclusion also holds for the
normalized conventional efficiency, η=ηC ≤ ε. The maxi-
mal slope of this decay is determined by the thermody-
namic mean force W=L, where L and W are geometric
quantities, i.e., they are independent of the parameterization
of the control path γ, see Fig. 1 (lower panel).
Moreover, Eq. (9) entails a universal optimization

principle, which arises from the observation that the bound,
Eq. (8), becomes an equality if the path γ is parameterized
in terms of its thermodynamic length. To this end, t has to
be replaced with the speed function ϕt, which is implicitly
defined through the relation

t ¼ τ

Z
ϕt

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνΛs

_Λν
s
_Λμ
s

q
=L: ð10Þ

Thus, since W is not affected by this transformation, the
bound [Eq. (9)] can be saturated for any given path γ,
whereby the efficiency [Eq. (4)] attains its geometric
maximum

ε� ¼ 1 − L2=Wτ: ð11Þ

Note that, in contrast to the common strategy of optimizing
the mechanical protocol for a given temperature profile
[46–52], this scheme exploits the freedom of external
control over the working temperature of the engine.

Holding for any thermodynamically consistent micro-
dynamics, our general analysis so far applies to classical
and quantum heat engines alike. To explore the funda-
mental differences between these two regimes, we now
model the time evolution of the working medium explicitly
using the well-established adiabatic Lindblad approach.
This scheme rests on the assumption that the modulations
of the system Hamiltonian and the rate at which the external
heat source provides thermal energy are both slow com-
pared to the relaxation time of the environment and the
unitary evolution of the bare medium. Applying this con-
dition together with the standard weak-coupling approxi-
mation and a coarse graining in time to wipe out memory
effects and fast oscillations yields the Markovian master
equation

∂tρt ¼ LΛt
ρt with

LΛX ≡ −
i
ℏ
½HV; X� þ

X
σ

ð½JσΛX; Jσ†Λ � þ ½JσΛ; XJσ†Λ �Þ: ð12Þ

Here, ℏ denotes Planck’s constant and the Lindblad
generator LΛ depends parametrically on the driving proto-
cols Λt, for details see Ref. [53] and Refs. [18,54–59].
Using Eq. (12), the periodic state ρt can be determined by
means of an adiabatic perturbation theory [60,61].
This procedure, which we outline in Ref. [53], yields the

Green-Kubo type expression

Rμν
Λ ¼ −

1

T

Z
∞

0

dt⟪ exp½KΛt�Fμ
ΛjFν

Λ⟫ ð13Þ

for the adiabatic response coefficients, where the canonical
correlation function is defined as

⟪XjY⟫≡
Z

1

0
dxTr½ϱ1−xΛ XϱxΛY� − Tr½ϱΛX�Tr½ϱΛY� ð14Þ

for arbitrary observables X and Y; ρΛ denotes the Gibbs
state defined in Eq. (5), the force operators are given by

Fw
Λ ≡ −∂VHV and Fu

Λ ≡ − ln ϱΛ ð15Þ

and the adjoint Lindblad generator KΛ is defined by the
relation Tr½XKΛY�≡ Tr½YLΛX� [62]. This super operator is
subject to three general consistency requirements. First,
since we now work on a coarse-grained time scale, where
coherent oscillations have been averaged out, the operators
JσΛ can only induce jumps between the energy levels of the
working system [58]. Hence, the eigenstates ofHV form the
preferred basis of the dynamics and KΛ obeys the invari-
ance condition

KΛ½HV; X� ¼ ½HV;KΛX�: ð16Þ

Second, owing to microreversibility, the generators KΛ and
LΛ are connected by symmetry relation [18]
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TϱΛKΛX ¼ LΛϱΛTX; ð17Þ

where the super operator T induces time reversal [18] and
we assume that no magnetic field is applied to the system,
i.e., THV ¼ HV and TJσΛ ¼ JσΛ. Together with Eq. (16),
this property implies the adiabatic reciprocity relation
Rμν
Λ ¼ Rνμ

Λ , which resembles the familiar Onsager sym-
metry of linear irreversible thermodynamics [63,64]. Third,
as a technical requirement, we understand that the jump
operators JσΛ form a self-adjoint and irreducible set; this
condition ensures that, for Λ fixed, the mean of any
observable relaxes to its unique equilibrium value under
the dynamics generated by KΛ in the Heisenberg picture
[65]. The expression Eq. (13) is then well defined over the
entire space of control parameters [66].
We are now ready to analyze the impact of quantum

effects on slowly driven heat engines from a geometric
perspective. To this end, we first divide the mechanical
force operator into a diagonal and a coherent part,

Fw
Λ ≡ Fd

Λ þ i½HV;GV �≡ Fd
Λ þ Fc

Λ: ð18Þ

Here, Fd
Λ commutes with HV and GV corresponds to an

adiabatic gauge potential [61]. Upon inserting this decom-
position into Eq. (13), the adiabatic response coefficients
decay into two components,

Rμν
Λ ¼ Dμν

Λ þ δμwδνwCww
Λ ; ð19Þ

where Dμν
Λ and Cww

Λ are given by Eq. (13) with Fw
Λ replaced

by Fd
Λ and F

c
Λ, respectively; the cross terms between Fc

Λ and
the diagonal operatorsFd

Λ and F
u
Λ vanish due to the property

[Eq. (16)] of the adjoint generator. Next, by plugging
Eq. (19) into the definition Eq. (8) of the thermodynamic
length and using the concavity of the square-root function,
we arrive at the bound [68]

L ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
d þ L2

c

q
: ð20Þ

The two quantities on the right, which are defined as

Ld ≡
I
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Dμν

Λ dΛμdΛν
q

and

Lc ≡
I
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Cww

Λ dΛwdΛw
p

;

thereby describe two genuinely different types of energy
losses: the reduced thermodynamic length Ld accounts for
the dissipation of heat in the environment and the quantum
correction Lc arises from the decay of superpositions
between the energy levels of the working system, a
mechanism known as quantum friction [69–73].
The constraint [Eq. (20)] puts an upper limit on the

optimal finite-time efficiency [Eq. (11)]. This bound,

ε� ≤ 1 − ðL2
d þ L2

cÞ=Wτ; ð21Þ

is saturated in the quasiclassical limit, where Fc
Λ ¼ 0; the

energy eigenstates of the system are then time independent
and the periodic state ρt is diagonal in this basis throughout
the cycle. In fact, since the quasistatic work W is
independent of Fc

Λ, the bound [Eq. (21)] shows that
injecting coherence into the working system can only
reduce the maximum efficiency at given power. These
coherence-induced performance losses are a universal
feature of the slow-driving regime, where superpositions
between different energy levels are irreversibly destroyed
by the environment before their work content can be
extracted through mechanical operations. While similar
conclusions could so far be drawn only for specific models
[69–73] and small driving amplitudes [18,74], our new
bound [Eq. (21)] applies to any heat engine that is covered
by Lindblad dynamics and operated in adiabatic response.
Thus, it further corroborates the emerging picture that
quantum effects can enhance the performance of thermal
machines only far from equilibrium [74–76].
To show how our results can be applied in practice, we

now consider a simple model for a solid-state heat engine
that is inspired by a recent experiment [7]. The working
system is a superconducting qubit with Hamiltonian

HV ¼ −
ℏΩ
2

ðΔσx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 − Δ2

p
σzÞ: ð22Þ

Here, σx and σz are the usual Pauli matrices, ℏΩ denotes
the overall energy scale, and the dimensionless parameters
Δ ≥ 0 and V ≥ Δ correspond to the tunneling energy and
the flux-tunable level-splitting of the qubit [77,78]. The
role of the environment plays a normal-metal island, whose
temperature can be accurately controlled with established
techniques [79] and monitored by means of sensitive
electron thermometers, a technology that could soon enable
calorimetric work measurements [80–85]. This reservoir
can be described in terms of two jump operators, JþΛ and
J−Λ , defined by the conditions

½HV;J�Λ � ¼�ℏΩVJ�Λ ; Tr½J�Λ J�†
Λ � ¼ �ΓΩV

1− exp½∓ ℏΩV=T� ;

where Γ determines the average jump frequency.
We proceed in three steps. First, we evaluate the

adiabatic response coefficients for the single-qubit engine
using Eq. (13). Second, we calculate the geometric quan-
tities entering the bounds Eqs. (9) and (21) and the optimal
speed function ϕt defined in Eq. (10). For simplicity, we
thereby assume that the device is driven by harmonic
temperature and energy modulations, i.e., we set

Λt ¼ fℏΩð1þ sin2½πΩt�Þ; 1þ sin2½πΩtþ π=4�g: ð23Þ
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Hence, the control path γ is a circle in the Λu-Λw plane.
Third, in order to assess the quality of our bounds, we
determine the periodic state ρt of the system exactly by
solving the time-inhomogeneous master equation, Eq. (12),
for both constant and optimal driving speed. Using the
expressions Eqs. (1) and (2), the power and the efficiency of
the engine can thus be obtained for any cycle time τ.
The results of this analysis are summarized in Fig. 2, for

details see Ref. [53]. We find that, for optimal driving
speed, our bound Eq. (9) is practically attained in the range
ε≳ 0.8, which corresponds to τ ≳ 2=Ω. The optimal proto-
cols Λ�

t ≡ Λϕt
thereby outperform the harmonic profiles

[Eq. (23)] by roughly a factor 1.2 in power at given efficiency.
Remarkably, this increase in performance persists even for
ε < 0.8, i.e., for short cycle times τ < 2=Ω, which are not
covered by the slow-driving approximation Eq. (6).
The lower panel of Fig. 2 shows that the single-qubit

engine operates most efficiently in the quasiclassical
configuration Δ ¼ 0. For this setting, the eigenstates of
the Hamiltonian Eq. (22) are independent of V and our
bounds Eqs. (20) and (21) are saturated. Increasing Δ leads
to more quantum friction. Hence, the thermodynamic
length grows and the optimal efficiency drops, whereby
both figures closely follow their upper and lower bound,
respectively. This behavior underlines our general result
that coherence can only reduce the efficiency of slow
engine cycles. Exploring the fast-driving regime by includ-
ing higher-order corrections in the expansion Eq. (6), which

could be derived with recent techniques going beyond the
adiabatic master equation, Eq. (12) [59,86,87], constitutes
an important problem for future investigations.
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