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Events in mesoscopic systems often take place at first-passage times, as is for instance the case for a
colloidal particle that escapes a metastable state. An interesting question is how much work an external
agent has done on a particle when it escapes a metastable state. We develop a thermodynamic theory for
processes in mesoscopic systems that terminate at stopping times, which generalize first-passage times.
This theory implies a thermodynamic bound, reminiscent of the second law of thermodynamics, for the
work exerted by an external protocol on a mesoscopic system at a stopping time. As an illustration, we use
this law to bound the work required to stretch a polymer to a certain length or to let a particle escape from a
metastable state.
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Introduction.—How much work do we need to do on a
mesoscopic system in order to let a certain event of interest
happen? For example, how much work do we require to
stretch a polymer to a certain length or to let a colloidal
particle escape from a metastable state, as illustrated in
Fig. 1? The latter is the Kramers’ escape problem [1,2],
which models, inter alia, biochemical reactions and the
escape of particles from bounded domains [3–5]. Although
it is well understood how long it takes for a particle to
escape a metastable state, see e.g. the Refs. [6–8], little is
known about the average work done on a particle when it
escapes a metastable state.
Stochastic thermodynamics is a thermodynamic theory

for mesoscopic systems [9–17] and provides experimental
testable predictions for their fluctuating properties [18,19].
An important result in stochastic thermodynamics is the
second-law-like bound [9,10]

hWðtÞi ≥ fðλfÞ − fðλiÞ ð1Þ

on the average work hWðtÞi done on a system in a fixed
time interval [0, t] as a function of the free energy
difference between the final and initial states, characterized
by the parameters λf ¼ λðtÞ and λi ¼ λð0Þ, respectively.
In what follows, we denote random variables with upper-

case letters and deterministic variableswith lowercase letters.
Averages h·i are over repeated realizations of the process.
Unfortunately, the bound given by Eq. (1) does not

provide much insights on the average work hWðTÞi ¼
hR T

0 WðtÞdti done on a mesoscopic system at an event of
interest. Indeed, because of thermal fluctuations the time T
when an event of interest—such as the escape of a particle
from a metastable state—takes place will be different for
each realization of the process, and therefore the second
law given by Eq. (1) does not apply.

In this Letter, we derive a fundamental bound on the
average work an external agent has done on a system at
times T when an event of interest happens, which we call a
stopping time. This law reads

hWðTÞi ≥ hf½λðTÞ�i − fðλiÞ þ β−1hπðTÞi; ð2Þ

where hπðTÞi is a correction term that accounts for the fact
that the process is in general out of equilibrium at the
stopping time T, and whose precise form we will specify
later. We call this law the second law of thermodynamics at
stopping times. To derive the second law given by Eq. (2),
we develop a thermodynamic theory for events in nonsta-
tionary processes that take place at random times and which
relies on martingale theory [20–22].

(a) (b)

FIG. 1. Stretching a polymer to a certain length l [panel (a)] or
letting a particle escape from a metastable state [panel (b)]. Panel
(a): an external agent (blue square) is connectedwith a spring (blue
zigzag line) to one of the end points (green circles) of a polymer
(grey zigzag line) and stretches the polymer until it reaches a length
l, after which the polymer end point is attached to an anchor point
(red object). Panel (b): a colloidal particle (full circle) escapes from
a metastable state under the influence of an external protocol λðtÞ
that changes the shape of the potential ϕðx; λÞ.
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System setup.—We consider a mesoscopic system com-
posed of slow and fast degrees of freedom (d.o.f.). The fast,
internal d.o.f. are hidden, whereas the slow d.o.f. are
observed and take values in X .
We assume that the system interacts weakly with an

environment that is in a state of thermal equilibrium at
temperature 1=β. For a given value of the external param-
eter λ, the system admits an equilibrium state

peqðx; λÞ ¼ e−β½ϕðx;λÞ−fðλÞ�; x ∈ X ; ð3Þ

where ϕ is the free energy for a fixed value x of the slow
d.o.f. and where f is the free energy of the total system. The
free energy

ϕðx; λÞ ¼ uðx; λÞ − sintðx; λÞ=β ð4Þ

is the sum of the internal energy u and the entropy sint
associated with the internal d.o.f.
We assume that the system is in thermal equilibrium with

its environment at t ≤ 0, and at time t ¼ 0 the system
engages with an external protocol that drives it out of
equilibrium. The protocol consists in a change of the
external parameter λðtÞ, such that, λðtÞ ¼ λi for t ≤ 0
and λðtÞ ¼ λf for t > τ.
We assume that the internal d.o.f. equilibrate on time

scales that are much shorter than those over which λðtÞ
varies (the protocol is quasistatic with respect to the
internal d.o.f.).
We aim to quantify the work done on the system at the

moment when a certain event of interest happens (for
example the escape of a particle from a metastable state).
The time when an event of interest happens is modeled with
a stopping time T. We say that a random time T ∈ ½0;∞Þ ∪
fþ∞g is a stopping time if it is a deterministic function
defined on the set of trajectories Xþ∞

0 ¼ fXðtÞgt∈Rþ that
obeys causality; in other words, the value of the stopping
time T is independent of the outcomes of the process X
after the stopping time. If the event does not occur, then
T ¼ þ∞ [23–25].
The probability measure P describes the probability of

events in the forward dynamics [i.e, with the protocol λðtÞ
and initial distribution peq] and we denote expectation
values with respect to this measure by h·iP ¼ h·i.
Time reversibility and martingales.—An important fea-

ture of mesoscopic systems is that they are time reversible.
Time reversibility is defined relative to the backward
dynamics that we define as follows [16]: the state is in
the equilibrium state peqðx; λfÞ for all times t < 0 and is
subsequently driven out of equilibrium by the protocol
λ̃ðtÞ ¼ λðτ − tÞ.
The dynamics of a mesoscopic system is time reversible

if there exists a process SðtÞ, defined on the set of
trajectories Xt

0, such that

hAðtÞiP ¼ hAðtÞeSðtÞiP̃∘Θ ð5Þ

holds for any observable AðtÞ that is a function of Xt
0, where

the measure P̃ describes the statistics of the process in the
backward dynamics. The map Θ is the time-reversal map
that mirrors trajectories relative to the time point τ=2, such
that Θ½Xþ∞

−∞ � ¼ fXðτ − tÞgt∈R. In other words, the expect-
ation value of an observable in the forward dynamics can be
expressed in terms of the expectation value of the same
observable in the backward dynamics, as long as it is
properly reweighted with the process eSðtÞ.
The Eq. (5) implies that

e−SðtÞ ¼
�
p̃½ΘðXþ∞

−∞Þ�
p½Xþ∞

−∞ �
����Xt

0

�
P
; ð6Þ

where p̃½ΘðXþ∞
−∞Þ�=p½Xþ∞

−∞ � is the Radon-Nikodym deriva-
tive between the two measures P̃∘Θ and P [24], or, loosely
said, the ratio between the two associated probability
densities, and where h·jXt

0iP is a conditional expectation
given Xt

0. The quantity e−SðtÞ exists as long as the two
measures P̃∘Θ and P are mutually absolutely continuous,
which holds since the interval [0, τ] is finite and the
microscopic laws of physics are time reversible.
Equation (6) implies that e−SðtÞ is a regular martingale.

Martingales are stochastic processes that model a gambler’s
fortune in a fair game of chance [26] or stock prices in
efficient capital markets [27]. We say that a stochastic
process MðtÞ is a martingale relative to another stochastic
process XðtÞ if (i) the processMðtÞ is a real-valued function
on the set of trajectories Xt

0; (ii) the process MðtÞ is
integrable, i.e., hjMðtÞji < ∞; (iii) the process MðtÞ has
no drift, i.e., with probability one hMðtÞjXs

0i ¼ MðsÞ for all
t > s ≥ 0 [23,24,28–30].
An important class of martingales are regular martin-

gales [24,30]. Let Y be an integrable, real-valued random
variable that is a function of the trajectory Xþ∞

−∞. Then the
process

MðtÞ ¼ hYjXt
0i; t ≥ 0; ð7Þ

is a regular martingale, where h·j·i denotes a conditional
expectation. The martingality of hYjXt

0i is a direct conse-
quence of the tower property of conditional expectations,
viz., hhYjXt

0ijXs
0i ¼ hYjXs

0i for all t > s ≥ 0.
Doob’s optional stopping theorem and a second-law-like

relation at stopping times.—A useful property of regular
martingales is Doob’s optional stopping theorem, which
states that for a regular martingale MðtÞ and for a stopping
time T it holds that hMðTÞi ¼ hMð0Þi, see Theorem 3.2 in
Ref. [24]. Doob’s optional stopping theorem implies that a
gambler cannot make fortune by quitting a fair game of
chance at an intelligently chosen moment T.
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Applying Doob’s optional stopping theorem to e−SðtÞ,
we obtain the following integral fluctuation relation at
stopping times,

he−SðTÞi ¼ he−Sð0Þi ¼ 1: ð8Þ

Using Eq. (8) and Jensen’s inequality he−SðTÞi ≥ e−hSðTÞi,
we obtain

hSðTÞi ≥ 0. ð9Þ

Principle of local detailed balance.—The Eq. (9) is
similar to a second law of thermodynamics, but misses a
connection with the work done on the system. We use the
principle of local detailed balance [11–17] to link SðtÞ with
the work WðtÞ. We say that a process obeys local detailed
balance if SðtÞ is the total entropy production, i.e.,

SðtÞ ¼ −βQðtÞ þ sint½XðtÞ; λðtÞ� − sint½Xð0Þ; λi�
− log p̃τ−t½XðtÞ� þ logpeq½Xð0Þ; λi�: ð10Þ

The first term on the right-hand side is the dissipated heat
divided by the temperature and equals the change in the
environment entropy. The second and third term denote the
change in the internal entropy (associated with the internal
d.o.f.) and the last two terms denote the change in system
entropy (associated with the observed d.o.f.). The distri-
bution p̃τ−tðxÞ is the probability distribution of the time-
reversed process at time τ − t [with external parameter
λ̃ðτ − tÞ]. If t ≥ τ, then p̃τ−tðxÞ ¼ peqðx; λfÞ, whereas if
t < τ then p̃τ−tðxÞ is obtained by evolving the statepeqðx; λfÞ
over a time interval s ∈ ½0; τ − t� using the time-reversed
protocol λ̃ðsÞ ¼ λðτ − sÞ.
Using the first law of thermodynamics

QðtÞ þWðtÞ ¼ u½XðtÞ; λðtÞ� − u½Xð0Þ; λi� ð11Þ

and the Boltzmann distribution, given by Eq. (3), we obtain
the expression (see the Supplemental Material [31])

SðtÞ ¼ βfWðtÞ − f½λðtÞ� þ fðλiÞg − πðtÞ ð12Þ

where

πðtÞ ¼ log
p̃τ−t½XðtÞ�

peq½XðtÞ; λðtÞ�
: ð13Þ

Second law of thermodynamics at stopping times.—
Equation (9) together with Eq. (12) implies the second
law of thermodynamics at stopping times Eq. (2) where

hfðTÞi ¼
Z

∞

0

dtpTðtÞfðtÞ; ð14Þ

and

hπðTÞi ¼
Z

∞

0

dt
Z
X
dxpT;XðTÞðt; xÞ log

p̃τ−tðxÞ
peq½x; λðtÞ�

ð15Þ

is a correction term that accounts for the fact that at the
stopping time the state may be far from thermal equilib-
rium. The distribution pT;XðTÞðt; xÞ is the joint probability
distribution of T and XðTÞ in the forward dynamics and
pTðtÞ is the probability distribution of the stopping time T.
The second law of thermodynamics at stopping times,

given by Eq. (2), is the main result of this Letter. It bounds
the average work that a mesoscopic system requires to
execute a certain task, which is completed at a stopping
time T. It is reminiscent of the second-law-like relations
derived in Ref. [22]. However, the paper [22] deals with
stationary systems, whereas the Eq. (2) holds for nonsta-
tionary systems.
The Eq. (8) together with Eq. (12) implies

he−βfWðTÞ−f½λðTÞ�þfðλiÞgþπðTÞi ¼ 1; ð16Þ

which is a Jarzynski-like relation [9,10] that holds at
stopping times.
Limiting cases.—In experiments or numerical simula-

tions it can be a daunting task to evaluate the quantity πðtÞ.
Fortunately, it turns out that πðTÞ ¼ 0 in several limiting
cases. In these cases we obtain the appealing bound

hWðTÞi ≥ hf½λðTÞ�i − fðλiÞ: ð17Þ

Examples of limiting cases for which Eq. (17) holds are
when (i) the stopping time T is larger than τ. Indeed,
if t > τ then p̃τ−tðxÞ ¼ peqðx; λfÞ and πðtÞ ¼ 0. (ii) The
driving λðtÞ is quasistatic. In this case, p̃τ−tðxÞ ¼
peq½x; λðtÞ� for all t, such that πðtÞ ¼ 0. (iii) The protocol
is quenched [i.e., λðtÞ ¼ λf for t > 0] and the probability
that T ¼ 0 is equal to zero (see the Supplemental Material
for a proof [31]).
Interestingly, if the probability that T ¼ 0 is equal to

zero, then πðTÞ ¼ 0 for a protocol λðtÞ that changes slowly
(quasistatic) and also for a protocol λðtÞ that changes
quickly (quenched). Hence, we may expect that πðTÞ ≈
0 holds for intermediate driving speeds too. This can be
verified through the Jarzynski relation at stopping times
Eq. (16), which simplifies into

he−βfWðTÞ−f½λðTÞ�þfðλiÞgi ¼ 1 ð18Þ

when πðTÞ ¼ 0.
In the next paragraphs, we use the second-law relations

at stopping times Eqs. (2) and (17) to bound the work
required to stretch a polymer or to let a particle escape.
Stretching a polymer.—We ask how much work is

required to stretch a polymer to a certain length l, as is
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illustrated in Fig. 1(a), and we apply the bound Eq. (2) to
this example. We consider a setup where one end of the
polymer is anchored at position x ¼ 0 to a substrate,
whereas the other end is fluctuating and described by a
stochastic process XðtÞ ∈ R. The dangling end of the
polymer is connected with a spring to an external agent,
say a molecular motor, centered at λðtÞ. At t ¼ 0, the
molecular motor starts to move and stretches the polymer
until it reaches a length l, at which point the motor stops
moving and the second end point of the polymer is
anchored to the substrate.
We assume that the dynamics of XðtÞ is well described

by a one-dimensional overdamped Langevin equation

dX
dt

¼ −μ∂xϕ½X; λðtÞ� þ
ffiffiffiffiffiffi
2d

p
ξðtÞ; t ≥ 0; ð19Þ

where μ is the mobility coefficient, d ¼ μ=β is the diffusion
coefficient, ξðtÞ is a Gaussian white noise with hξðtÞi ¼ 0
and hξðtÞξðt0Þi ¼ δðt − t0Þ, and where

ϕ½x; λðtÞ� ¼ κp
2
x2 þ κm

2
½x − λðtÞ�2 ð20Þ

is the sum of the free energy κpx2=2, of a polymer with one
of its end points anchored to the substrate at x ¼ 0, and the
free energy κm½x − λðtÞ�2=2, of the spring that connects the
dangling end point of the polymer to the molecular motor
located at λðtÞ. Furthermore, we assume that at the initial
time t ¼ 0 this polymer system is in thermal equilibrium
with its surroundings and that the dynamics of the motor is
given by

λðtÞ ¼ λi þ ðλf − λiÞ
1 − e−t=τprot

1 − e−τ=τprot
; t ∈ ½0; τ�; ð21Þ

where τprot > 0 characterizes the speed of the protocol. The
quantity τrel ¼ 1=½μðκm þ κpÞ� is the polymer relaxation
time. If τprot ≪ τrel, then the molecular motor quenches the
polymer, whereas if τprot ≫ τrel, then the motor stretches
the polymer in a quasistatic manner.
The work the motor performs on the polymer is [32]

WðtÞ ¼
Z

t

0

ds∂λϕ½XðsÞ; λ�_λs: ð22Þ

Figure 2(a) presents the average work hWðTÞi for
T ¼ inf ft > 0∶jXðtÞj ≥ lg, in other words, the motor
stops as soon as the polymer’s length exceeds l, and we
compare it with the second law-like bound Eq. (2) (see the
Supplemental Material for details [31]). Interestingly, we
observe that for all values of τprot the term hΔπðTÞi ≈ 0 and
thus hWðTÞi ≥ hf½λðTÞ�i − fðλiÞ, consistent with the
bound Eq. (17). As discussed in the previous paragraph,
this can be understood from the fact that if PðT ¼ 0Þ, then
πðTÞ ¼ 0 in both the quasistatic and quenched limits.

For τprot large enough, hWðTÞi → 0. Indeed, if
τprot>τfp—where τfp¼ð ffiffiffi

π
p

l2=4dÞðeα=α3=2Þ is the mean-
first passage time hTi when λf ¼ λi, with α ¼ β½ðκp þ
κmÞl2=2� [8]—then the polymer extends spontaneously
due to thermal fluctuations and hWðTÞi ≈ 0.
Escape problem.—We determine how much work is

required to let a colloidal particle escape a metastable
state, as is illustrated in Fig. 1(b). We consider a particle
described by the overdamped Langevin Eq. (19) with
potential

ϕðx; λÞ ¼ ðϕmax − λÞ x2

x2max
þ λ; x ∈ ½0; xmax�; ð23Þ

and reflecting boundary condition at x ¼ 0. Initially, the
particle is trapped in the metastable state with Boltzmann
distribution, given by Eq. (3), and with λ ¼ λi ¼ 0.
We aim to determine the average work done on the

particle, given by Eq. (22), at the escape time
T ¼ inf ft > 0∶XðtÞ ≥ xmaxg. In the absence of a driving
force, the particle escapes in a time hTi ¼ τfp ∼ eβϕmax ,
which is very large when βϕmax ≫ 1. Therefore, we
facilitate the particle escape with a kick that deforms the
potential landscape as λðtÞ ¼ λke−t=τprot for t ≥ 0.
Interestingly, Fig. 2(b) shows that the bound Eq. (17) is
satisfied, which indicates that again πðTÞ ≈ 0. This is
confirmed with an evaluation of the Jazynski Eq. (18) at
stopping times.
Discussion.—In mesoscopic systems, physical events of

interest often happen at random times, such as, the escape
of a colloidal particle from a metastable state [1–8]. We
have derived the second law of thermodynamics at stopping
times Eq. (2), which bounds the average amount of work
that has been done on a system at a stopping time or first-
passage time T as a result of a change in the free-energy
landscape. This second law applies to arbitrary systems that
obey local detailed balance and arbitrary stopping times.

(b)(a)

FIG. 2. Simulation results for stretching a polymer [panel (a)]
and the escape problem [panel (b)]. Panel (a): model parameters
are l ¼ 2.2, μ ¼ 0.1, β ¼ κp ¼ 1, κm ¼ 2, λi ¼ 0.2, λf ¼ 5, and
τ ¼ 1eþ 6. The relaxation time τrel ¼ 10=3 and the mean first-
passage time τfp ≈ 1560 are denoted by the vertical dotted lines.
The black solid line equals zero and is a guide to the eye. Panel
(b): model parameters are μ ¼ 0.1, β ¼ xmax ¼ 1, ϕmax ¼ 10, and
τprot ¼ 4. Markers are averages over 1eþ 4 realizations of the
process.
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If hΔπðTÞi ≈ 0, then the second law Eq. (2) simplifies
into Eq. (17). Interestingly, we have shown that Eq. (17)
holds in the quasistatic limit and in the limit of quenched
protocols if T > 0 with probability one. In addition, using
numerical simulations we find that in our examples Eq. (17)
holds at intermediate driving speeds of the protocol, and I
believe this will be in general the case (as long as in the
quenched limit T > 0 with probability one).
If hπðTÞi < β½fðλiÞ − hfðλðTÞÞi�, then the system can

perform work on its environment. For instance, we can stop
the process as soon as WðtÞ > ε, with ε a small positive
number (see Supplemental Material [31] for an example).
Work extraction by stopping a process at an intelligently
chosen moment is closely related to the construction of
Maxwell demons, which are smart devices that change the
protocol of a system at a cleverly chosen moment [33].
However, in the thermodynamics at stopping times we do
not consider what happens after the stopping time (e.g.,
in the escape problem we are not interested in the
events that happen after the particle has escaped the
potential).
The present Letter demonstrates how for nonstationary

processes thermodynamic relations at stopping times can
be derived using the martingale e−SðtÞ given by Eq. (6); so
far, thermodynamic properties of stochastic processes at
first-passage times have mainly been studied in the context
of stationary processes [21,22,34–38]. It would be inter-
esting to use the martingality of e−SðtÞ to derive bounds on,
e.g., extreme values of QðtÞ [22,39] or mean first-passage
times [36] in nonstationary processes.

The author thanks A. Barato, K. Brander, R. Chétrite,
G. Falasco, E. Fodor, J. Garrahan, S. Gupta, F. Jülicher,
G. Manzano, P. Pietzonka, S. Pigolotti, E. Roldán, S. Samu,
and S. Singh for discussions on stochastic thermodynamics,
martingales and stopping times.
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