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We identify universal properties of the low-energy subspace of a wide class of quantum optical models in
the ultrastrong coupling limit, where the coupling strength dominates over all other energy scales in the
system. We show that the symmetry of the light-matter interaction is at the origin of a twofold degeneracy
in the spectrum. We prove analytically this result for bounded Hamiltonians and extend it to a class of
models with unbounded operators. As a consequence, we show that the emergence of superradiant phases
previously investigated in the context of critical phenomena, is a general property of the ultrastrong
coupling limit. The set of models we consider encompasses different scenarios of possible interplay
between critical behavior and superradiance.
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The experimental control of the coherent interaction
between light and matter is one of the cornerstones of the
recent developments in the field of quantum technologies.
Experiments in cavity quantum electrodynamics (cavity
QED) have been essential both for our understanding of
quantum-optical phenomena at the most fundamental level
[1,2] and for the implementation of quantum information
protocols [3,4]. A decisive challenge in cavity QED
experiments consists in increasing the strength of the
coupling between light and matter. In this respect, two
main milestones have been reached, each of them leading to
new features and potentially new technological function-
alities [5]. A key step was the achievement of the strong
coupling regime, where the coupling strength is larger than
any dissipation rate. This regime has been demonstrated in
atomic cavity QED [6], semiconductor nanostructures [7,8]
and superconducting circuits [9], leading to the observation
of genuine quantum effects such as vacuum Rabi oscil-
lations and photon antibunching [10–14].
In the last decade, we entered in a new era of cavity QED

with the achievement [15–20] of the ultrastrong coupling
(USC) regime, where the coupling strength becomes
comparable or even larger than the cavity frequency
[21–23]. Furthermore, recently developed quantum simu-
lation techniques made it possible to observe [24–27] the
physics of the ultrastrong coupling regime even in systems
that do not naturally achieve the required interaction
strength. The rich phenomenology of this new regime of
cavity QED has been the focus of an intense research
activity. The USC regime proved to induce profound
modifications in a variety of fundamental quantum optical
phenomena, ranging from vacuum radiation [28,29] to
single-photon emission [30,31], scattering processes [32],
and transport properties [33,34]. Among its prominent

features, it was also recognized that some systems
exhibit a twofold degenerate ground state in the USC
regime [35–37]. It was proposed to exploit this interesting
feature for the design of protected qubits [38–40].
Ultrastrong light-matter interactions in cavity QED may

also give rise to superradiant phase transitions (SPT)
[41,42]. From a theoretical point of view, the Dicke model
is a paradigmatic example in which such a phase transition
occurs in the thermodynamic limit, when the number of
atoms coupled to the cavity mode is going to infinity [43].
More recently, a SPT have been predicted to occur also in
the quantum Rabi model [44–46], which is a finite-
component model. In finite-component models the thermo-
dynamic limit can be defined formally by letting one
parameter of the Hamiltonian go to infinity. In addition
to a macroscopic number of photons in the ground state, the
superradiant phase is in both cases characterized by a
twofold degeneracy of the low-energy eigenstates and a
breaking of the parity symmetry. Note that violation of
gauge invariance [47–50] and the role of the usually-
neglected diamagnetic “A2 term” [51–54] can constrain the
validity of effective models in the USC regime.
Nevertheless, Hamiltonian engineering via parametric cou-
plings or analog quantum simulation schemes makes it
possible to observe superradiant phase transitions and to
feasibly explore extreme regimes of parameters.
In this Letter, we show that twofold degeneracy and

parity-symmetry breaking are universal properties of quan-
tum optical models in the ultrastrong coupling limit, where
the coupling strength dominates over all other energy
scales. We give a general proof of this result in the case
of bounded Hamiltonians and extend it to a set of models
with unbounded operators. The class of Hamiltonians we
consider includes coupled nonlinear oscillators, such as
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Bose-Hubbard chains, which are relevant for a wide class of
experimental platforms. We show that in such bosonic
systems a superradiant phase always emerges in the ultra-
strong coupling limit, whether in the form of a crossover or
a phase transition. In particular, the phenomenology of the
SPT occurring in both the Rabi and Dicke models is
recovered by introducing proper scalings of the parameters.
Finally, we show that a novel interplay between critical
behavior and supperradiance can emerge in the ultrastrong
coupling limit.
Bounded operators.—When the Hamiltonian is

bounded, the proof of the result mentioned above is
straightforward but the intuition it provides is nonetheless
useful. Consider the Hilbert space H ¼ H1 ⊗ H2 of two
coupled parity-conserving systems, with the following total
Hamiltonian

H ¼ H1 þH2 þ gHI: ð1Þ

Local parity conservation is expressed as ½P1; H1� ¼
½P2; H2� ¼ 0. A key point is the symmetry properties of
the interaction term: HI ¼ X1 ⊗ X2. The operators X1 and
X2 are generic Hermitian operators acting on H1 and H2,
respectively, but we assume that they satisfy the following
anticommutation relations

fP1; X1g ¼ fP2; X2g ¼ 0; ð2Þ

which is valid, e.g., for all quantum optical models
involving dipolar light-matter couplings. As a result, the
Hamiltonian commutes with a global parity symmetry
operator, ½H;P1P2� ¼ 0. For now we also assume that
there is no dark state in the system, i.e., KerðXiÞ ¼ ∅. In all
that follows, we define the ultrastrong coupling limit as
HUSC ¼ limg→∞H=g. This condition can be viewed as a
formal thermodynamic limit for finite-component systems.
When all the operators are bounded, this limit is well
defined and the total Hamiltonian can be approximated as

H=g ≈HUSC ¼ X1 ⊗ X2: ð3Þ

The eigenstates of HUSC are product states of the form
jΨi ¼ jϕ1ijϕ2i, where Xijϕii ¼ Eijϕii. From Eqs. (2)
and (3) we see that the states jΨi and P1P2jΨi are
degenerate and orthogonal. In this degenerate subspace,
the superpositions jΨþi¼ð1= ffiffiffi

2
p ÞðjΨiþP1P2jΨiÞ, jΨ−i ¼

ð1= ffiffiffi
2

p ÞðjΨi − P1P2jΨiÞ are eigenstates of the total parity
operator P1P2. This proves that, in the USC limit, the
spectrum is at least twofold degenerate and that the
degenerate subspaces contain eigenstates with opposite
parity, as illustrated in Fig. 1. We refer to the latter feature
as symmetry breaking. The generalization to a multipartite
system can be obtained in a similar fashion: consider now a
general Hilbert space H ¼ ⊗iHi with

H ¼
X
i

Hi þ
X
i>j

gijXi ⊗ Xj; ð4Þ

where the symmetry assumption takes the form ∀ i,
½Pi; Hi� ¼ 0 and ∀ i, fPi; Xig ¼ 0. The same arguments
used in the bipartite case lead to the conclusion that the
eigenstates are of the form jΨþi ¼ ð1= ffiffiffi

2
p Þð⊗i jϕii þ

⊗i PijϕiiÞ and jΨ−i ¼ ð1= ffiffiffi
2

p Þð⊗i jϕii− ⊗i PijϕiiÞ,
which are degenerate and are also eigenstates of the total
parity operator P ¼ Q

i Pi, with opposite parity. The
structure of the low-energy spectrum is shown in Fig. 1.
Unbounded case.—When the Hamiltonian is unbounded,

the operatorHUSC defined in Eq. (3) may lead to unphysical
results. As an example, consider two coupled harmonic
oscillators and the following Hamiltonian

H0 ¼ ω1â†âþ ω2b̂
†b̂þ gðâ† þ âÞðb̂† þ b̂Þ: ð5Þ

The parity of the number of excitations is conserved and the
coupling operators satisfy the requirements of Eq. (2).
However, HI ¼ gðâ† þ âÞðb̂† þ b̂Þ is not lower bounded,
leading to a dynamical instability of the system for
g > ð ffiffiffiffiffiffiffiffiffiffiffi

ω1ω2

p
=2Þ. A possible way to stabilize such a system

in the USC limit is to add a nonlinear quartic term to each
oscillator. Hence,we begin by extending the previous results
to Bose-Hubbard dimers, described by the following
Hamiltonian,

H ¼ H0 þ ϵ1â†â†â âþϵ2b̂
†b̂†b̂ b̂; ð6Þ

where ϵ1 and ϵ2 may take arbitrary values. Note that in the
context of quantum optics, such models have been widely
used to described various nonlinear elements, and they are
relevant to many experimental platforms [55]. Let us show
that in theUSC limit a low-energy effectiveHamiltonian can

Normal 
Phase

Doubly degenerate
Phase

Crossover

(b)(a)

FIG. 1. (a) General structure of the phase diagram for the
considered class of quantum light-matter interaction models. The
variable N is an arbitrary scaling parameter defining an effective
thermodynamic limit. As the coupling strength is increased, the
system can enter a crossover region or undergo a critical phase
transition. A doubly degenerate parity-breaking phase always
emerges in the ultrastrong coupling limit (g → ∞). b) Example of
the doubly degenerate subspace for a finite-dimensional system
and for a Bose-Hubbard dimer. The states j�i are eigenstates of
the coupling operators of Eq. (4) and the displacement parameters
α and β are solutions of Eq. (7).
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be found by applying a displacement operator on both fields
â and b̂. The displaced Hamiltonian is expressed as
Hα;β ¼ D†

a½α�D†
b½β�HDa½α�Db½β�, where Dc½γ� ¼ eγĉ

†−γ�ĉ

with c ∈ fa; bg and γ ∈ C. This operation is meant to
displace the vacuum state into a new local minimum in the
effective potential landscape. Accordingly, we choose the
values of the displacements α and β for which the linear
terms appearing in Hα;β cancel out. This condition is set by
the system of equations

ω1αþ 2ϵ1αjαj2 þ gðβ� þ βÞ ¼ 0;

ω2β þ 2ϵ2βjβj2 þ gðα� þ αÞ ¼ 0:
ð7Þ

Apart from linear terms, the HamiltonianHα;β in its general
form contains the following additional parts: (i) harmonic
terms proportional to ϵ1jαj2, ϵ2jβj2 that renormalize the
oscillators frequency, (ii) squeezing terms proportional to
ϵ1α

2, ϵ2β2, and (iii) additional third order terms proportional
to ϵ1α; ϵ2β. Before looking at limg→þ∞Hα;β=g and find
HUSC, let us mention a general feature ofHα;β. Provided that
a meaningful solution to Eq. (7) is found, the quadratic part
of the displaced Hamiltonian can always be cast into the
following form

Hð2Þ
α;β ¼ 2gjxjâ†âþ 2g

jxj b̂
†b̂þgðâ†þ âÞðb̂†þ b̂Þ

þ
�
−
ω1

2
þgjxj

�
ðâ†þ âÞ2þ

�
−
ω2

2
þ g
jxj

�
ðb̂†þ b̂Þ2;

ð8Þ

where x ¼ β=α. Without the squeezing terms, this
Hamiltonian would always lead to a dynamical instability,
but the additional squeezing terms, which are positive by
construction, stabilize it. The quadratic part of the
Hamiltonian displaced according to Eq. (7) is therefore
always well defined. In the USC limit g → þ∞, we look for
solutions to Eq. (7) considering the ansatz α, β ∼ ffiffiffi

g
p

, and
keeping only the dominant terms in g. Such approximate
solutions exist and are given by α2 ¼ g=ðε31ε2Þ1=4 and

β ¼ −αðϵ1=ϵ2Þ1=4. As a result, Hðα;βÞ
USC ¼ limg→þ∞Hα;β=g

is well defined and all nonquadratic terms vanish in this
limit. The resulting Hamiltonian depends only on a single
parameter η ¼ ðϵ1=ϵ2Þ1=4,

Hðα;βÞ
USC ¼ 2ηâ†âþ 2

η
b̂†b̂þ ηðâþ â†Þ2 þ 1

η
ðb̂þ b̂†Þ2

þ ðâ† þ âÞðb̂† þ b̂Þ: ð9Þ

From this last expression we conclude that the structure of
the spectrum, identified above in the case of bounded
operators, also extends to the low-energy sector of Bose-
Hubbard dimers, as shown in Fig. 1. Here, the degeneracy in

the spectrum comes from Eq. (7), which is invariant under
the transformation fα; βg → f−α;−βg. In addition, the
ground state is superradiant, in the sense that the parameters
α, β are both proportional to g and both modes are therefore
macroscopically occupied in the USC limit.
As in the bounded case, let us show that we can generalize

the results to multipartite systems with a continuum spec-
trum. Let us consider the Bose-Hubbard chain

H ¼
X
i

ðωiâ
†
i âi þ ϵiâ

†
i â

†
i âiâiÞ þHI; ð10Þ

where the interaction Hamiltonian is given by linear two-
body coupling termsHI ¼

P
i>j gi;jðâ†i þ âiÞðâ†j þ âjÞ. To

find an effective low-energy description in the USC limit,
we apply the unitary transformation Hα⃗ ¼ D†½α⃗�HD½α⃗�,
where we defined D½α⃗� ¼ ⊗iDi½αi�, being D†

i ½·� a displace-
ment operator applied on the field âi. As in the bipartite
unbounded case, we look for displacement parameters α⃗ for
which the local linear terms vanish. The generalization of
Eq. (7) to the multipartite case corresponds to

ωiαi þ 2εijαij2αi þ
X
j≠i

gijðαj þ α�jÞ ¼ 0; ∀ i: ð11Þ

For each vector of displacement parameters α⃗ that satisfies
this equation, we obtain an effective Hamiltonian of the
form,

Hα⃗ ¼
X
i

½Ωiâ
†
i âi þ ϵiα

2
i ðâ†2i þ â2i Þ� þHI þ E0; ð12Þ

where we defined Ωi ¼ ωi þ 4ϵiα
2
i . The constant energy

term E0 ¼
P

i ωijαij2 þ ϵijαij4 þ 4
P

i>j gi;jαiαj depends
on the displacement parameters and must be kept into
account to determine the eigenenergies of the effective
Hamiltonian. We will first describe analytical results for a
Bose-Hubbard chain of three cavities in the fully symmetric
case ωi ¼ ω, ϵi ¼ ϵ and gi;j ¼ g, for any fi; jg. We look for
displacements parameters α⃗ ¼ fα; β; γg that satisfy
Eq. (11). Approximated solutions (see the Supplemental
Material [56]) in the USC limit can be found taking the
ansatz α; β; γ ∼ ffiffiffi

g
p

, which implies that the three fields are
simultaneously displaced and acquire a number of excita-
tions proportional to the coupling strength. Notice that in
the USC limit the stability of the displaced Hamiltonian
(12) is granted by the renormalization of the frequenciesΩi,
and so only solutions in which all fields are displaced give
rise to stable Hamiltonians. The two displacement vectors
�α⃗ lead to the same effective Hamiltonian, and so we
proved that the low-energy eigenspectrum of a symmetric
three-site Bose-Hubbard chain for g → ∞ is composed of
degenerate doublets with opposite parity. As illustrated in
Fig. 2(b), the eigenvectors are given by displaced Fock
states Da½α��Db½β��Dc½γ��jn1; n2; n3i. Notice that in the
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fully symmetric case any permutation of fα; β; γg provides
an equivalent set of solutions. This additional degeneracy is
due to permutation symmetry and it is expected to be lifted
as soon as inhomogeneities are introduced. To verify this
intuition we take a semi-analytic approach (see the
Supplemental Material [56]) to determine the low-energy
eigenspectrum in the nonsymmetric case. First, we numeri-
cally solve Eq. (11) and then we derive the coefficients of
the Bogoliubov transformation that diagonalizes the result-
ing Hamiltonian. The results of this analysis, depicted in
Fig. 2, show that the eigenspectrum in the inhomogeneous
case is given by degenerate doublets with opposite parity,
while the permutation symmetry is indeed lifted. In the
system ground state, each bosonic mode is displaced by an
amount proportional to

ffiffiffiffiffiffiffi
g=ϵ

p
, as in the symmetric case.

Finite-component phase transitions.—We have seen that
the ground state of the effective bosonic Hamiltonians
derived above are superradiant in the USC limit. However,
there is no phase transition in this case since the ground state
properties ofHUSC vary smoothly with g (see Fig. 1). In the
following we show that by defining another type of thermo-
dynamic limit, i.e., a specific scaling of the parameters with a
formal macroscopic factor N, the model can reproduce
different kinds of superradiant phase transitions, including
both types associated with the Dicke and quantum Rabi
models. More precisely, considering the Bose-Hubbard
dimers of Eq. (6), we define Dicke-type superradiance
[43] as a phase in which both oscillators acquire a macro-
scopic coherence in the superradiant phase. In contrast, we
call Rabi-type superradiance [45,46] a superradiant phase in
which only one of the oscillator gains macroscopic coher-
ence. To capture a Dicke-type superradiant phase, we are
therefore looking for solutions of Eq. (7) in which the
parameters α and β are both scaling as

ffiffiffiffi
N

p
. A relevant

scaling to find this type of solution is the following:

HdðN; λÞ ¼ ω1â†âþ ω2b̂
†b̂þ gðâ† þ âÞðb̂† þ b̂Þ

þ ϵ1
N
â†â†â âþ ϵ2

N
b̂†b̂†b̂ b̂; ð13Þ

where we consider the limit N → ∞ for different values of
the parameters. Here, the parameter driving the phase
transition is λ ¼ 2g=

ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p
. For λ < 1, the system is in

the “normal phase.” In the limit limN→∞HdðN; λÞ, the
Hamiltonian obtained simply byneglecting the termspropor-
tional to 1=N is quadratic and well defined. The ground state
is a squeezed vacuum obtained after a standard Bogoliubov
transformation. For λ > 1, the phase is superradiant: there is a
solution to Eq. (7) with α ∼ β ∼

ffiffiffiffi
N

p
. In the displaced

Hamiltonian, since Hð3Þ
α;β ∼ ðϵ1=NÞα and Hð4Þ

α;β ∼ ϵ1=N, all
nonquadratic terms vanish for N → ∞. The Hamiltonian is
then given by Eq. (8). For a Rabi-type superradiance, the
solutions we are interested in scale as α ∼

ffiffiffiffi
N

p
and

β=α ∼ 1=
ffiffiffiffi
N

p
. A scaling providing a superradiant phasewith

this properties is given by

HrðN; λÞ ¼ ω1â†âþ Nω2b̂
†b̂þ

ffiffiffiffi
N

p
gðâ† þ âÞðb̂† þ b̂Þ

þ ϵ1
N
â†â†â âþ ϵ2

N
b̂†b̂†b̂ b̂ : ð14Þ

Once again, the scaling is such that λ is finite and governs the
transition. The normal phase can be treated in the same way
as for the Dicke-type phase considered above. Given the
infinite detuning between the two oscillators in the limit
N → ∞, exact diagonalization [58] shows that the ground
state is trivial in this case (decoupled vacuum state).
However, when λ > 1 we have, for N → ∞,

β

α
¼ −

1ffiffiffiffi
N

p 2g
ω2

; ð15Þ

α2 ¼ N
ω1ðλ2 − 1Þ

2ϵ1
: ð16Þ

This defines a superradiant phase, whose effective
Hamiltonian is

Heff ¼ ω1λ
2â†âþ ω1

2
ðλ2 − 1Þðâ† þ âÞ2 þ Nω2b̂

†b̂

þ
ffiffiffiffi
N

p
gðâ† þ âÞðb̂† þ b̂Þ: ð17Þ

As previously, the higher-order terms of the effective
Hamiltonian vanish and the two oscillators are decoupled
in the limit N → ∞. This result shows that the Rabi-type
superradiant phase transition is not specific to the quantum
Rabi model but can also occur in a finite-component system
with vanishingly small nonlinearities.
Let us now show that in the USC limit a first-order phase

transition can emerge between two phases that are both
twofold degenerate with broken parity symmetry. We con-
sider an extendedversion of aDickemodelwhere, in addition
to standard light-matter coupling, we include an interatomic
interaction. We restrict ourselves to the two-atom case, but
the properties we discuss can be directly generalized to any

(a) (b)

FIG. 2. (a) Values of the displacements α⃗, solution of Eq. (11),
for increasing values of the homogeneous coupling strength
gi ¼ g, for ωi ¼ f1; 2; 4g, ϵi ¼ ωi × 10−2. (b) The ground state
of a Bose-Hubbard trimer in the USC limit is described by
quantum fluctuations on top of macroscopic displacements in
each oscillator.
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finite number of atoms. The system Hamiltonian is given
by H2D ¼ ωâ†âþ ðωq=2Þðσ̂1z þ σ̂2zÞ þH2D

I , where H2D
I ¼

g
ffiffiffiffi
N

p ðâ† þ âÞðσ̂1x þ σ̂2xÞ þ χNσ̂1xσ̂
2
x, where we have already

introduced an effective scaling parameter N. In the USC
limit, here obtained for N → ∞, the local atomic energy
terms can be neglected, as they correspond to bounded
operators with a finite prefactor. As a result, in this limit the
Hamiltonian H2D is block-diagonal and can be rewritten as,

H2D
s1;s2 ¼ ωâ†âþ g

ffiffiffiffi
N

p
ðs1 þ s2Þðâ† þ âÞ − χNs1s2; ð18Þ

where s1 and s2 are the corresponding eigenvalues of σ̂ð1Þx

and σ̂ð2Þx , respectively. Each block of the Hamiltonian is
diagonalized by the displacement Da½α� where α ¼
−½ðg ffiffiffiffi

N
p Þ=ωÞ�ðs1 þ s2Þ. The low-energy eigenspectrum

in the USC limit is then composed of degenerate doublets
of two different kinds, obtained for parallel (s1 ¼ s2) or
orthogonal (s1 ¼ −s2) atomic spins. For parallel spins,
we obtain an effective low-energy Hamiltonian Hk ¼
ωâ†âþ ½ð4g2NÞ=ω� − χN and the ground-state energy

Ek
0 ¼ ½ð4g2NÞ=ω� − χN. On the other hand, for orthogonal

spins we obtain H⊥ ¼ ωâ†âþ χN, with twofold degen-
erate ground state jg⊥i ∈ fjþ;−; 0i; j−;þ; 0ig and
ground-state energy E⊥

0 ¼ χN. By looking at the ground-
state energies we see that the system undergoes a first-order
quantum phase transition for χ ¼ χc ¼ 4g2=ω. For small
values of χ, the ground state is in the orthogonal-spin
subspace and it is given by jg⊥i ∈ spanfjþ;−; 0i;
j−;þ; 0ig. As χ is increased above the critical value,
the groundstate switches to the parallel-spin sector and it
is given by a superradiant state jgki ∈ spanfjþ;þ;−αi;
j−;−; αig, in which the bosonic field acquires a number of
photons proportional to α2 ¼ 4Nðg=ωÞ2. This quantum
phase transition is due to the competition between the
interatomic coupling and the light-matter interaction. As
the latter pushes the atoms towards an antiferromagnetic
configuration, the phase transition occurs for ferromagnetic
interatomic interactions χ > 0. Notice that this kind of
phase transition has been identified so far only for a similar
system in the thermodynamic limit [54].
To conclude, we have shown that in the ultrastrong-

coupling limit the low-energy spectra of quantum-optical
models are characterized by a universal structure composed
of degenerate doublets that break the parity symmetry.
Furthermore, we have illustrated how in finite-component
systems the features of the USC limit can emerge either as
the result of a smooth crossover or as a critical phase
transition. Finally, we have shown that in the USC limit a
first-order quantum phase transition can take place between
two different kinds of parity-broken phases. The univer-
sality of these results paves the way to the experimental
implementation of novel finite-component quantum phase
transitions in a broad variety of atomic and solid-state

platforms. From a theoretical perspective, the framework
we introduced motivates the thorough phenomenological
study of the USC limit of different light-matter interaction
models. Of particular interest is its extension to open
quantum systems, in which finite-component dissipative
phase transitions have also been predicted [59–61].
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Hoff, M. Brune, J.-M. Raimond, and S. Haroche, Nature
(London) 446, 297 (2007).

[3] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P.
DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys.
Rev. Lett. 83, 4204 (1999).

[4] J. Majer et al., Nature (London) 449, 443 (2007).
[5] A. F. Kockum, A. Miranowicz, S. Savasta, S. De Liberato,

and F. Nori, Nat. Rev. 1, 19 (2019).
[6] G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett. 58,

353 (1987).
[7] J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn,

S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L.
Reinecke, and A. Forchel, Nature (London) 432, 197
(2004).

[8] E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours,
J. M. Gérard, and J. Bloch, Phys. Rev. Lett. 95, 067401
(2005).

[9] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S.
Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J.
Schoelkopf, Nature (London) 431, 162 (2004).

[10] A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch,
Phys. Rev. Lett. 79, 1467 (1997).

[11] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E.
Northup, and H. J. Kimble, Nature (London) 436, 87
(2005).

[12] D. Bozyigit, C. Lang, L. Steffen, J. M. Fink, C. Eichler, M.
Baur, R. Bianchetti, P. J. Leek, S. Filipp, M. P. da Silva, A.
Blais, and A. Wallraff, Nat. Phys. 7, 154 (2011).

[13] C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink,
A. A. Abdumalikov, Jr., M. Baur, S. Filipp, M. P. da Silva, A.
Blais, and A. Wallraff, Phys. Rev. Lett. 106, 243601 (2011).

[14] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J.
Aumentado, H. E. Türeci, and A. A. Houck, Phys. Rev. Lett.
107, 053602 (2011).

[15] Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato,
C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, Phys. Rev.
Lett. 105, 196402 (2010).

[16] T. Niemczyk et al. Nat. Phys. 6, 772 (2010).
[17] P. Forn-Díaz, J. Lisenfeld, D. Marcos, J. J. García-Ripoll, E.

Solano, C. J. P. M. Harmans, and J. E. Mooij, Phys. Rev.
Lett. 105, 237001 (2010).

PHYSICAL REVIEW LETTERS 124, 040404 (2020)

040404-5

https://doi.org/10.1038/nature05589
https://doi.org/10.1038/nature05589
https://doi.org/10.1103/PhysRevLett.83.4204
https://doi.org/10.1103/PhysRevLett.83.4204
https://doi.org/10.1038/nature06184
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1103/PhysRevLett.58.353
https://doi.org/10.1103/PhysRevLett.58.353
https://doi.org/10.1038/nature02969
https://doi.org/10.1038/nature02969
https://doi.org/10.1103/PhysRevLett.95.067401
https://doi.org/10.1103/PhysRevLett.95.067401
https://doi.org/10.1038/nature02851
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1038/nature03804
https://doi.org/10.1038/nature03804
https://doi.org/10.1038/nphys1845
https://doi.org/10.1103/PhysRevLett.106.243601
https://doi.org/10.1103/PhysRevLett.107.053602
https://doi.org/10.1103/PhysRevLett.107.053602
https://doi.org/10.1103/PhysRevLett.105.196402
https://doi.org/10.1103/PhysRevLett.105.196402
https://doi.org/10.1038/nphys1730
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.105.237001


[18] P. Forn-Daz, J. J. Garca-Ripoll, B. Peropadre, J.-L. Orgiazzi,
M. A. Yurtalan, R. Belyansky, C. M. Wilson, and A.
Lupascu, Nat. Phys. 13, 39 (2017).

[19] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito,
and K. Semba, Nat. Phys. 13, 44 (2017).

[20] Z. Chen et al., Phys. Rev. A 96, 012325 (2017).
[21] M. H. Devoret, S. Girvin, and R. Schoelkopf, Ann. Phys.

(Amsterdam) 16, 767 (2007).
[22] J. Bourassa, J. M. Gambetta, A. A. Abdumalikov, Jr., O.

Astafiev, Y. Nakamura, and A. Blais, Phys. Rev. A 80,
032109 (2009).

[23] P. Forn-Díaz, G. Romero, C. J. P. M. Harmans, E. Solano,
and J. E. Mooij, Sci. Rep. 6, 26720 (2016).

[24] N. K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel,
A. Bruno, F. Luthi, D. J. Thoen, A. Endo, and L. Dicarlo,
Nat. Commun. 8, 1715 (2017).

[25] J. Braumüller, M. Marthaler, A. Schneider, A. Stehli, H.
Rotzinger, M. Weides, and A. V. Ustinov, Nat. Commun. 8,
779 (2017).

[26] D. Marković, S. Jezouin, Q. Ficheux, S. Fedortchenko, S.
Felicetti, T. Coudreau, P. Milman, Z. Leghtas, and B. Huard,
Phys. Rev. Lett. 121, 040505 (2018).

[27] G. A. Peterson, S. Kotler, F. Lecocq, K. Cicak, X. Y. Jin, R.
W. Simmonds, J. Aumentado, and J. D. Teufel, Phys. Rev.
Lett. 123, 247701 (2019).

[28] S. De Liberato, D. Gerace, I. Carusotto, and C. Ciuti, Phys.
Rev. A 80, 053810 (2009).

[29] E. Sánchez-Burillo, L. Martín-Moreno, J. J. García-Ripoll,
and D. Zueco, Phys. Rev. Lett. 123, 013601 (2019).

[30] A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, Phys.
Rev. Lett. 109, 193602 (2012).
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