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The accurate and reliable description of measurement devices is a central problem in both observing
uniquely nonclassical behaviors and realizing quantum technologies from powerful computing to precision
metrology. To date quantum tomography is the prevalent tool to characterize quantum detectors. However,
such a characterization relies on accurately characterized probe states, rendering reliability of the
characterization lost in circular argument. Here we report a self-characterization method of quantum
measurements based on reconstructing the response range—the entirety of attainable measurement
outcomes, eliminating the reliance on known states. We characterize two representative measurements
implemented with photonic setups and obtain fidelities above 99.99% with the conventional tomographic
reconstructions. This initiates range-based techniques in characterizing quantum systems and foreshadows
novel device-independent protocols of quantum information applications.
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The information of any quantum system we can acquire,
manipulate, and transmit is finally revealed by quantum
measurements. As the measuring devices become increas-
ingly sophisticated, the implementations of both tests of
quantum theories and quantum information applications
[1–4] require experimental calibration and certification of a
measurement apparatus, which is normally achieved by
recording the measurement outcomes on probe states. In
the principle of quantum mechanics, the operation of a
quantum measurement on quantum states complies with
Born’s rule pðjÞ

k ¼ TrðρðjÞπkÞ, k ¼ 0; 1;…; n − 1. Here
fρðjÞg represents quantum states described by density
matrices and fπkg is the positive-operator-valued measure
(POVM) of a quantum measurement with n outcomes. This
formula describes the measurement as a mapping from the
state space of quantum systems fρjρ ≥ 0;TrðρÞ ¼ 1g to the
classically accessible detector outcomes represented in the
probability space fðp0; p1;…; pn−1Þg, thus enabling us to
predict the measurement results and also perform the
inverse, i.e., to identify the measurement operators in
accordance with observed results. To do this, one could
probe the measurement device by identical copies of a set
of known states, and then find the POVM fπkg closest to
the observed results, for example, by optimizing the least
square function,

min
X

j;k

½pðjÞ
k − TrðρðjÞπkÞ�2; ð1Þ

under the physical constraint πk ≥ 0 and
P

πk ¼ I, where I
denotes the identity operator. This method, known as
quantum detector tomography (QDT), has been suggested
as the standard tool of characterizing quantum measure-
ments [5–8].
Despite the success of QDT, an unavoidable issue arises

in real-world applications, that is, the accuracy of the
tomography results relies on precisely calibrated probe
states [see Fig. 1(a)]. Conversely, to calibrate the source for
probe states one requires a convincing measurement device,
which forms a fundamental loop paradox. Efforts have been
made to develop improved tomography techniques such as
self-calibrating tomography, that relaxes partial knowledge
in the state or the measurement side [9,10]. On the other
hand, in certain cases quantum states and measurements
can be “self-tested” in a device-independent (DI) way [11–
14], i.e., without assuming the internal workings of the
apparatus used. These self-testing methods originated from
ensuring secure cryptography [11] and were then utilized to
bound dimensionality [15,16], generate random numbers
[17–19], and verify quantum computers [20]. In this line,
DI tests are typically based on a witness involving observed
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probabilities so only a specific class of states and mea-
surements can be self-tested within this regime. More
recently, there was another idea of DI tests concerning
the full attainable range of the input-output correlations
[21–23]. This provides the possibility of directly inferring
the information of the measurement from the range [24]
rather than certifying a targeted witness.
In this Letter, we propose and realize quantum

detector self-characterization (QDSC), capable of charac-
terizing general unknown quantum measurements, based
fully on the detector outcomes of the measurement
device itself, which thus can break the loop paradox in
characterizing quantum systems. The idea is to retrieve the
attainable region for measurement results in actual use of
the detector,

WðπÞ ≔ f½Trðρπ0Þ;…;Trðρπn−1Þ�jρ ≥ 0;TrðρÞ ¼ 1g;

termed as the response range of a quantum measurement.
The response range can be formalized as the expectation
values of a set of operators and derived by the fundamental
constraints on quantum systems and uncertainty relations
[25]. Distinguished from conventional QDT which explic-
itly involves probe states, this procedure [conceptually
shown in Fig. 1(b)] reconstructs the measurement directly
from the statistics of measurement outcomes fpðjÞgwithout
knowing which states are measured. With practical data in
finite statistics, the problem is recast into an optimization
problem that aims at giving a best estimation of the range
WðπÞ consistent with the data, that is,

minF ½WðπÞ; fpðjÞg�;
subject to πk ≥ 0 and

X

k

πk ¼ I; ð2Þ

where F ½WðπÞ; fpðjÞg� is a cost function evaluating
how well data fit the estimation. From the estimated range
WðπÞ one can recover the information about the POVM
without involving the density matrices of states. Compared
with self-calibrating tomography [9,10] that combines
measurement statistics and a priori knowledge in states
or measurement operators to perform a joint tomography,
the self-characterization method directly analyzes the
collective behaviors of the measurement results mapped
from the entire state space rather than certain set of states.
To apply this QDSC method to the characterization of

practical devices, we implemented two representative
measurements for tomography purpose, mutually unbiased
bases (MUB) and symmetric informationally complete
(SIC) measurements for single-qubit system [26], with
photonic setups shown in Fig. 2. These two measurements
are of particular interests in quantum information applica-
tions [32,33]. The experimental setup consists of two parts:
state preparation (a) and measurement (b) or (c). The state
preparation starts with a heralded single photon source via
spontaneous parametric down-conversion. A polarizing
beam splitter and three electronically controlled wave
plates prepare probe states fρðjÞg encoded in the polariza-
tion degree of freedom of single photons. The states are sent
to a measurement apparatus with operations on the polari-
zation modes and spatial modes on the single photons and
detection with photon-counting detectors. The clicks of
each detector correspond to an outcome πk of the
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FIG. 1. Schematic diagram of quantum tomography and self-
characterization. (a) Tomography of quantum measurements
demands a set of known probe states, whereas tomography of
quantum states demands well-calibrated quantum detectors. This
forms a loop paradox in calibrating quantum systems. (b) In
contrast, quantum detector self-characterization only uses the
detector outcome probabilities from the measurement part itself
to reconstruct the response range of the measurement, with
unknown states, which thus can break the aforementioned loop
paradox.
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FIG. 2. Experimental setup. (a) Heralded single photons are
generated via spontaneous parametric down-conversion, fol-
lowed which a set of probe states are prepared by three
electronically controlled wave plates and directed towards the
measurement device (b) or (c). (b) The MUB device is composed
of two wave plates followed by a beam displacer (BD) to perform
projection on a certain basis. (c) The SIC device is a four-outcome
general measurement realized by wave plates, BDs and single
photon counting modules (SPCMs). BBO, β-barium borate
crystal; KDP, potassium di-hydrogen phosphate; HWP, half wave
plate; QWP, quarter wave plate.
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measurement. For both measurements, we collected the
measured statistics of detectors for 50 probe states sampled
on the Bloch sphere [26]. Note although QDSC does not
need to know the exact form of probe states, we recorded
the settings of state preparation for the following tomo-
graphic reconstruction.
For qubit measurements used in our experiment, it has

been shown [21] that the response rangeWðπÞ is a set fpg
satisfying

L ¼ ðp − tÞTQþðp − tÞ ≤ 1; ð3Þ
and p is subject to ðI −QQþÞðp − tÞ ¼ 0 which is equiv-
alent to the requirement of linear dependencies among
outcomes of the POVM [see the Supplemental Material
[26] for a derivation of Eq. (3)]. The matrix Q and the
vector t are given by Qk;l ¼ TrðπkπlÞ=2 − TrðπkÞTrðπlÞ=4
and tk ¼ TrðπkÞ=2, and ð:Þþ denotes the Moore-Penrose
pseudoinverse. More precisely, the matrix Q quantifies the
overlap of POVM elements and the vector t represents the
weight of POVM elements, thus Q and t identify the
POVM fπkg up to the equivalence class of unitary
operations and relabeling of outcomes [26]. The physical
constraint πk ≥ 0 can be written as t2k −Qk;k ≥ 0 in theQ, t
representation. Geometrically, the inequality is in a center
form of an n-dimensional (hyper)ellipsoid centered on t.
Upon considering the linear dependencies of the POVM
elements, Eq. (3) may reduce to an ellipsoid, an ellipse, or a
segment depending on the number of linear independent
operators in fπkg.

The characterization in our experiment is based on
several assumptions: (i) the dimension of the system (qubit
system in our case), and (ii) the probe states are adequately
sampled to cover the boundary of the state space. In this
sense our method is semi device independent. In addition,
we assume fair sampling, i.e., the registered statistics is a
representative sample of the generated states and the state
preparation and measurement device are uncorrelated.
These requirements are reasonable for an optical experi-
ment and not more than a standard tomography scenario.
The characterization procedure firstly extracts features in
the data set via singular value decomposition and principle
component analysis. This step removes the redundant linear
dependent outcomes and is robust against experimental
noise (see the Supplemental Material for details [26]). Then
we perform a convex hull of the processed data to obtain the
boundary data set B. In the estimation we resort to the direct
least squares between the boundary of the estimated range
and the boundary data ½1 − ðpðjÞ − tÞTQþðpðjÞ − tÞ�2 for
j ∈ B as the cost function. As a result, the characterization
is conducted with only the measured statistics by solving
the constrained optimization problem

min
X

j∈B
½1 − ðpðjÞ − tÞTQþðpðjÞ − tÞ�2;

subject to t2k −Qk;k ≥ 0: ð4Þ
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FIG. 3. Results of quantum detector self-characterization (QDSC). (a), (c) The reconstructed Q and t (chromatic bars) for the MUB
and SIC devices, respectively. The corresponding results of quantum detector tomography (transparent bars with solid line edges) are
also plotted for comparison. (b), (d) Left: the estimated response range (blue region) and the measured data (points), illustrated in the
probability space despite the linear dependencies of the measurement operators, for the MUB and SIC devices, respectively. Right: the
detailed results represented in terms of the values of L in Eq. (3). Error bars are standard uncertainties derived from 40 runs of the
experiment.
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Figure 3 shows the experimental results of QDSC of the
two measurements. To show the performance of self-
characterization, we also give the results reconstructed
with conventional QDT (with the same probe states) for
comparison. In the QDT scenario, we use the measured
statistics fpðjÞg, combined with the density matrices fρðjÞg
derived by the settings of wave plates, to numerically solve
the convex optimization problem in Eq. (1) and reconstruct
the POVM elements fπkg (thereby Qtomo and ttomo). The
reconstructed results Qsc and tsc via QDSC are in well
agreements with the reconstruction by conventional QDT
[see Figs. 3(a) and 3(c)], having the fidelities FQ ¼
½Trð

ffiffiffiffiffiffiffiffiffiffiffi
Qtomo

p
Qsc

ffiffiffiffiffiffiffiffiffiffiffi
Qtomo

p
Þ�2=½TrðQtomoÞTrðQscÞ� and Ft ¼

ðPk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ttomo
k tsck

p Þ2 above 99.99% with the tomographic
reconstruction (QDT) for both implementations [26]. To
further visualize the results of the QDSC, we plot the
reconstructed response range together with the measured
data in Figs. 3(b) and 3(d). The response range and the

measured data are illustrated in a three-dimensional
probability space of its linear independent outcomes,
despite the linear dependent ones (due to the fact that
pk þ pkþ1 ¼ 1=3 for k ¼ 0, 2, 4 for the MUB device andP

k pk ¼ 1 for the SIC device).
The comparison of QDT and QDSC in terms of the

distribution of L is shown in Fig. 4. The distribution
reflects how well the range of the reconstruction fits
the observed data, therefore giving a DI verification of the
reconstructions. It can be seen from the results that the
QDSC shows less violations of Eq. (3) in average
compared with QDT. In contrast with QDT which suffers
from the errors in state preparation, the QDSC method is
solely based on the measured statistics that is completely
accessible at the detection side, thus is more robust to
experimental imperfections in state preparation. The
deviations from the bound in the results of QDSC are
mainly attributed to the statistical fluctuations on the
measurement results.
The quantities Q and t represent the overlap between

different elements of the POVM and the trace of each
element, respectively, which fully characterizes the struc-
ture of the POVM, i.e., the physical model of the meas-
urement device [34]. The representation given by QDSC is
up to symmetry transformations that can be understood as
the transformation of the reference frame of the whole
system [35,36]. The reference frame can be specified with
respect to the measurement POVM, then further usage of
the measurement device can be conducted in a consistent
way. To validate the usefulness of QDSC and demonstrate
the break of the circular argument, we in turn perform a
state tomography with the measurement calibrated by
QDSC, and compare the results with those calibrated by
QDT and those without a priori calibration (see Fig. S2 of
the Supplemental Material [26]).
In conclusion, we realize quantum detector self-charac-

terization that solely utilizes the events produced in the
measurement part to explore the geometrical structure of
the detector response. We have applied the self-characteri-
zation method to two typical, extensively used measure-
ments, highlighting its feasibility and robustness in
practical cases. The present self-characterization method
extends witness-based methods to a range-based method in
characterizing quantum systems and devices. Together with
a modeling on the response range of measurement oper-
ators, this method can be further generalized to more
complicated devices. Future works will investigate the
range for high-dimensional systems and entangled states.
We expect the range-based techniques will become a new
means for specifying quantum systems and mapping
detector response [37], and find their applications in a
wide range of quantum information tasks such as cryp-
tography, random number generation [19] and metrology,
especially where calibrating measuring apparatus is
required in advance.
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FIG. 4. Comparison of quantum detector tomography (QDT)
and self-characterization (QDSC). The results are represented via
tests of (a) the MUB device (red dot) and (b) the SIC device
(purple triangle). Each marker represents the measured values of
L in Eq. (3) averaged over 40 runs for a same probe state. The
marginal distributions in the horizontal (QDT) and vertical
(QDSC) axes, represented by histograms from the 50 × 40 data
before average and the corresponding Kernel fittings (red dashed
lines), reflect the deviations of the measured data from the bound
(black dashed lines).
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Vértesi, and G. Lima, Device-Independent Certification of a
Nonprojective Qubit Measurement, Phys. Rev. Lett. 117,
260401 (2016).

[13] W.-H. Zhang, G. Chen, X.-X. Peng, X.-J. Ye, P. Yin, Y.
Xiao, Z.-B. Hou, Z.-D. Cheng, Y.-C. Wu, J.-S. Xu, C.-F. Li,
and G.-C. Guo, Experimentally Robust Self-Testing for

Bipartite and Tripartite Entangled States, Phys. Rev. Lett.
121, 240402 (2018).

[14] A. Tavakoli, J. Kaniewski, T. Vértesi, D. Rosset, and N.
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