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Lotus leaves floating on water usually experience short-wavelength edge wrinkling that decays toward
the center, while the leaves growing above water normally morph into a global bending cone shape with
long rippled waves near the edge. Observations suggest that the underlying water (liquid substrate)
significantly affects the morphogenesis of leaves. To understand the biophysical mechanism under such
phenomena, we develop mathematical models that can effectively account for inhomogeneous differential
growth of floating and freestanding leaves to quantitatively predict formation and evolution of their
morphology. We find, both theoretically and experimentally, that the short-wavelength buckled configu-
ration is energetically favorable for growing membranes lying on liquid, while the global buckling shape is
more preferable for suspended ones. Other influencing factors such as the stem or vein, heterogeneity, and
dimension are also investigated. Our results provide a fundamental insight into a variety of plant
morphogenesis affected by water foundation and suggest that such surface instabilities can be harnessed for
morphology control of biomimetic deployable structures using substrate or edge actuation.
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Having waves in morphological pattern is energetically
favorable for thin living tissues such as leaves, flowers, and
biological membranes [1], where spontaneous symmetry
breaking induced by differential growth is normally con-
sidered as a significant factor in the origin of such complex
patterns [2–7], despite the known contribution of genes
[8,9]. Growth-induced morphogenesis can be affected by
many elements including intrinsic (e.g., gene [9]) and
external (e.g., phototropism [10]) ones. In this work, we
observe that water can dramatically alter the morpho-
genesis of lotus leaves in the same plant, where the ones
floating on water demonstrate flat geometry with short-
wavelength wrinkles on the edge, while the leaves growing
above water usually morph into a bending cone shape with
long rippled waves near the edge, as shown in Fig. 1. Such
a phenomenon reveals the interplay between internal
growth-induced residual stresses and external support from
the water (liquid substrate), which affects the morpho-
genesis of growing tissues. In this work, we explore,
theoretically and experimentally, the water effects and
other relevant factors that govern the differential growth-
induced pattern selection in diverse aquatic plant leaves.
We first establish a mathematical framework to study the

underlying mechanism and to effectively predict the morpho-
genesis of growing lotus leaves. Growth is a complex process
involving biochemical and physical reactions across different
length and timescales. Since the growth process itself can be
assumed to be very slow (takes time to relax to its
equilibrium shape), the total deformation of the body can
be viewed as time independent and is mainly attributed to the
change of mass and elastic deformations. Before the

deformation (reference configuration), the place of each
material point is denoted by X, while x represents the
material point at the current configuration [11]. We perform
multiplicative decomposition of deformation gradient tensor
F ¼ ∂x=∂X into elastic and growth parts [21], namely
F ¼ A ·G, where A is an elastic tensor characterizing the
reorganization of the body, satisfying compatibility (no
overlap) and integrity (no cavitation), while G ¼ Iþ g
(with kgk ≪ 1) is a growth tensor describing mass change,
in which g denotes the gradient of displacement field u� in
the virtual configuration with zero deflection ζ ¼ 0 [11]. The
Green-Lagrange strain tensor is then defined as
2E ¼ AT ·A − I, in which I is the identity tensor.
Considering the characteristic parameter ϱ ¼ h=L (thick-
ness/length, with ϱ ≪ 1) for thin leaves, dimensional analy-
sis [11] yields the Föppl–von Kármán type strain coupled
with spontaneous growth tensor,

εij ¼
1

2
ðui;j þ uj;i þ ζ;iζ;j − gij − gjiÞ

− ζ;αgα;3δi3δj3 þOðϱ3Þ; ð1Þ
where ui;j denotes the displacements, while ζ is the out-of-
plane deflection of middle surface of the leaf. Latin indices
i; j;… run from 1 to 3, while Greek indices α; β;… take
values in f1; 2g. A comma in subscript denotes a partial
derivative and we use Einstein’s convention for implicit
summation on repeated indices. Since biological soft tissues
hold a high volume fraction of water, they are elastically
incompressible with det A ¼ 1.
We consider a lotus leaf floating on water as a thin

homogeneous film lying on a substrate, and assume isotropy
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of Mooney-Rivlin constitution that follows a generalized
Hooke’s law for soft tissues [22,23]. The potential energy P
of the system can be written as the sum of leaf part Pf and
substrate part Ps, namely P ¼ Pf þ Ps. Inspired by finite
elasticity theory of biological growth in soft tissues [3,4], we
derive generalized Föppl–von Kármán equations that can
describe inhomogeneous differential growth of floating (P)
and freestanding leaves (Pf) [11]. Using the divergence
theorem, the first variation of potential energy with respect to
ζ and the in-plane elastic strains ε0 leads to the following
equilibrium equations [11],

DðΔ2ζ − ΔCMÞ þ∇ · ∇ ·Mg −∇ · ðhσe ·∇ζÞ þ Ksζ

¼ −
D
2
∇ · ∇ ·

0
B@ g023;2 − g0

13;2þg0
23;1

2

− g0
13;2þg0

23;1

2
g013;1

1
CA;

σe · n ¼ 0; ð2Þ

whereD ¼ Eh3=9 denotes the bending stiffness of leaves in
which E is Young’s modulus, and g0α3 represents the growth
strains of the neutral surface. The elastic stress σe is
expressed as

σeαβ ¼
2E
3
½ðε0αβ − εgαβÞ þ ðε0γγ − εgγγÞδαβ�: ð3Þ

For compatible growth, the terms CM and Mg
αβ represent,

respectively, the curvatures induced by the different hori-
zontal and vertical growing rates of distinct leaf layers,
which are, respectively, defined by

CM ¼ g0α3;α;

Mg
αβ ¼

2E
3

Z
h=2

−h=2
ðεgαβ þ εgγγδαβÞX3dX3: ð4Þ

Here, we assume a liquid substrate whose effective stiffness
is given byKs ¼ ρg̃, where ρ is the liquid mass density and g̃
the gravitational acceleration [24]. Therefore, the normal
force acting on the leaf reads Σ33 ¼ −Ksζ. For a leaf
growing freely on a surface, the governing equation (2)
should satisfy the following boundary conditions,

Δζ − CM −
1

2
ðζ;αβ − g0α3;βÞlαlβ þ

Mg
αβ

D
nαnβ ¼ 0;

n ·∇
�
ðΔζ − CMÞ þ

Mg
αβ

D
nαnβ

�

þ 1

2
l ·∇

�
ðζ;αβ −

g0α3;β þ g0β3;α
2

þ 4Mg
αβ

D

�
lαnβ

�
¼ 0;

σe · n ¼ 0; ð5Þ

in which l and n are tangential and normal unit vectors,
respectively.
To solve growth-induced large deformations of the leaf/

substrate model (2) and to trace the nonlinear morphologi-
cal evolution of wrinkles, we adopt an efficient and robust
numerical algorithm [11] through coupling spectral collo-
cation method [25] for spatial discretization and asymptotic
numerical method (ANM) [26] for nonlinear resolution.
Motivation of using spectral collocation approach stems
from its global approximation nature, which can provide
superior accuracy compared with finite difference and finite
element method that are based on local arguments. The
ANM is a numerical perturbation technique based on a
succession of high-order Taylor series expansions with
respect to an adaptive path parameter, which appears as a
remarkably efficient continuation predictor to trace the
postbuckling evolution on the equilibrium path. This
resolution framework that combines advantages
of both methods is particularly capable of solving highly
nonlinear instabilities with finite deflection and
deformation.

FIG. 1. Water effect on morphogenesis of diverse aquatic plant
leaves. A floating lotus leaf (a) grows with short waves along the
edge (the wavy edge is highlighted by red color in experiments),
while suspended lotus leaves (b) and (c) morph into long-
wavelength ripples (depending on the size of main stem [11])
near the margin. The more apparent global bending cone shape in
natural lotus leaves might be caused by vein effect. With water
foundation, the leaf of white water lily (d) remains flat, while for
the suspended leaf (e) globally bends with long ripples near the
edge. The leaf of Victoria water lily (f) where water substrate
occupies about 80% of the entire leaf area (local effect of liquid
foundation) grows into a bowllike shape with sharp edge bending.
The blue background in (a), (d), and (f) represents water
foundation. In theoretical calculations of (a)–(f), we took
R=h ¼ 50 and Ksh=E ¼ 1=1200. The growth strain exponen-
tially attenuates from the edge to the center, satisfying
εg ¼ ϵ0 exp ½−τðR − rÞ=R�, in which τ ¼ 1 and ϵ0 ∼ 10−2.
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Leaves and leaflike structures exhibit a variety of
patterns, ranging from the gracefully undulating submarine
algal blades [27] to the saddle-shaped, coiled, or edge-
rippled leaves of many terrestrial and aquatic plants [28].
There exists a long-term misunderstanding in the literature,
that is, only when the growth strain reaches a large value
(e.g., ∼100% in [5]), the growing leaf can morph into edge
ripples. This spontaneous strain, however, goes far beyond
their validity range of linear elastic constitution. Here, we
find that both saddle-shaped leaves and pleated leaves are
related to their own structure and generalized constraints
that they are subjected to. The origins of such constraints
can be diverse such as water foundation and main stem of
lotus leaves. We distinguish in Fig. 1 the different growth
morphogenesis of lotus leaves which float on the water or
suspend above the water. For a lotus leaf lying on the water,
liquid substrate can dramatically affect its growth configu-
ration with short-wavelength ripples along its edge yet
remaining almost flat in the bulk [see Fig. 1(a)], while a
suspended lotus leaf above water tends to grow into long-
wavelength ripples [see Figs. 1(b) and 1(c)].
We further look into size effect on leaf morphogenesis.

For circular lotus leaves floating on the water, larger
dimensionless radius R=h leads to larger wrinkling wave
number due to dimension effect [see Figs. 2(a) and 3(a)]
[11], whereas for suspended lotus leaves, the diameter of
the main stem or vein can select buckled wave number of
shapes [see Figs. 1(b) and 1(c)], instead of dimensionless
size R=h [see Fig. 3(c)]. More precisely, the thicker the
main stem is, the more waves are observed along the edge
of leaves [see Figs. 1(b) and 1(c)]. Similar constraint
influence can be observed in different geometry such as
oblong leaves of Calathea rufibarba Fenzl “Wavestar” (see
Fig. 4) [11]. In addition, we find that the critical growth
strain of the constrained leaf by the main vein remains
smaller than that of the unconstrained leaf, which implies
why edge-rippled morphogenesis other than saddle shape is
energetically favorable for long leaves in nature [11]. For
oblong leaves with a fixed width/thickness ratio, the

number of waves along the edge appears to be proportional
to the aspect ratio [see Fig. 4(g)] [11].
Water effect can also be found in leaves with different

geometries such as a fan-shaped leaf of white water lily. In
addition to its stiffer material property to lotus leaf, the
geometric defect can relieve compressive stresses and thus
this leaf experiences distinct growing morphology. With
water support, the natural growth strain cannot reach its
critical wrinkling value and thus the leaf remains flat [see
Fig. 1(d)], while for the suspended leaf with lower
structural stiffness, it can globally deform with slight
ripples near the edges [see Fig. 1(e)]. This phenomenon
is found to be universal and size independent [see Figs. 3(b)
and 3(d)]. An interesting phenomenon of water effect exists
in leaves of Victoria water lily where water substrate
occupies about 80% of the entire leaf area (local effect
of liquid foundation). Both observation and theory in
Fig. 1(f) show that the leaf of Victoria water lily morphs
into a bowllike configuration with a sharp bent edge upon
growth.
To further explore growth-induced critical instability

conditions of leaf morphogenesis, we derive a scaling
law to predict the buckling wave number and growth strain
[11]. As an ansatz, we consider the following forms for the

FIG. 2. The comparison of model, theory, and experiments for
water-foundation leaves: (a) Critical wrinkling wave number kc
of circular floating lotus leaves as a linear function offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KsR4=Eh34
p

. Our model and theoretical predictions agree well
with experiments. (b) Critical growth strain εgc of circular floating
lotus leaves as a linear function of k2ch2=R2. Fitting coefficients:
C1 and C2 [11].

FIG. 3. Size effect (R=h) on growing shapes of lotus (circular)
and white water lily leaves (fan-shaped): (a),(b) water foundation
(blue background), (c),(d) suspended (stem support). For circular
leaves floating on water, larger dimensionless radius R=h leads to
more waves, i.e., larger wave number (the wavy edges are
highlighted by red color in experiments), while for circular
leaves constrained by the central main stem, the dimension
has no apparent effect on the wrinkling wave number and leaf
morphology. Apart from size effect, this difference implies the
important role played by water foundation in the morphology of
growing aquatic plants. As for fan-shaped leaves, size effect,
however, remains insignificant with or without water substrate.
Material parameter: Ksh=E ¼ 1=1200. Attenuation coefficient:
τ ¼ 1. Growth strain: ϵ0 ∼ 10−2.

PHYSICAL REVIEW LETTERS 124, 038003 (2020)

038003-3



displacements upon wrinkling: ζ ¼ Aðkr=RÞ cosðkθÞ,
where k denotes the wave number, and the wrinkling
amplitude, Aðkr=RÞ, is a decaying function that can be
approximated by an exponential law. Minimization of the
system yields the critical buckling wave number and
growth strain of circular floating lotus leaves that obey
the following linearized relations, confirmed by both
computations based on our models and experiments (see
Fig. 2),

kc ∼

ffiffiffiffiffiffiffiffiffiffiffi
KsR4

Eh3
4

r
; εgc ∼

h2k2c
R2

: ð6Þ
More details on theoretical derivations can be found in [11].
Growing soft tissues usually exhibit spatial inhomoge-

neities and anisotropic growth upon large deformation [29],
partially because of spatial heterogeneous distribution and
transport of nutrient sources. A simple and realistic way to
consider this heterogeneity is to take an exponential decay
law for in-plane differential growth (εgθθ=ε

g
rr and ∇εgαβ on

growth morphology). Here, we consider a growth strain
attenuated from the edge to the center, satisfying

εgαβ ¼ ϵ0αβ exp½−τðR − rÞ=R�, in which τ is an attenuation
coefficient. The increase of heterogeneity of growth strain
leads to more rippled edges, while it reduces into the
homogeneous growth with flattened margin when τ ¼ 0
[11]. We find that with the increase of growth anisotropy
ϵ0θθ=ϵ

0
rr, the lotus leaf deforms into wavier shape (yet with a

limit value). However, the spatial inhomogeneity of growth
strain (in-plane attenuation) has no significant influence on
leaf morphology [11]. We further investigate the out-of-
plane heterogeneity along the thickness direction caused by
phototropism of the plants; i.e., leaves generally grow faster
on the back side than the side facing the sun light [10]. This
inhomogeneity can result in a growth-induced moment Mg

that can greatly alter the morphogenesis of leaves. In Fig. 4,
we demonstrate the influence of out-of-plane growth
heterogeneity on pattern formation of diverse leaves with
different geometries. For circular leaves such as lotus, the
growth moment leads to a distinct coupled behavior of
global bending and edge wrinkling. However, for fan-
shaped leaves such as white water lily, effect of growth
curvature remains rather limited, probably due to geometric

FIG. 4. Effect of growth-induced inhomogeneity on morphogenesis of diverse plant leaves. The upper line and lower line represent,
respectively, our theoretical predictions of pattern selection without or by accounting for inhomogeneous growth-induced bending
moment. The columns classify the leaves by different geometries: circular, fan-shaped, and rectangular. To distinguish between
antisymmetric shape (c) and reflection-symmetric mode (f), the wrinkling edges are highlighted by red color in natural leaves
and experiments. In theoretical calculations of (a)–(f), we took R=h ¼ 50 for circular and fan-shaped leaves, while
L=W ¼ 2 and W=h ¼ 50 for oblong leaves. Attenuation coefficient τ ¼ 1 and growth strain at leaf margin ϵ0 ∼ 10−3 are set.
(g) Critical wrinkling wave number kc of suspended oblong leaves as a linear function of aspect ratio L=W. Our model and theoretical
predictions match well with experiments. (h) Critical growth strain εgc of suspended rectangular leaves as a linear function of h2=L2.
Fitting coefficients: C3 and C4 [11].
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imperfection. For oblong leaves such asCalathea rufibarba
Fenzl “Wavestar,” we find that the growth curvature
determines the symmetry selection of wrinkling morphol-
ogy. Without a heterogeneous growth-induced moment, an
oblong leaf prefers to buckle into an antisymmetric shape,
whereas with growth curvature, reflection-symmetric pat-
tern is more favorable. Such pattern selection is attributed
to the growth moment that can impose a symmetric bending
disturbance, toward triggering a reflection-symmetric wavy
shape. Dimensional analysis [11] yields the critical buck-
ling wave number kc ∼ L=W and growth strain εgc ∼ h2=L2,
consistent with our model predictions, as shown in
Figs. 4(g) and 4(h).
Inspired by the substrate-affected biological growth, we

next design a demonstrative experiment to harness such
mechanism for pattern formation, by using a water-swelling
rubber (WSR) that can hold maximum volume swelling
rate over 300% after sufficient water absorption [11]. We
first compress the WSR into thin sheets with a minimum
thickness ∼0.3 mm and then cut them into different leaflike
shapes. Interestingly, these thin sheets floating on water
morph into similar patterns as in nature and predicted by
our theoretical models (see Figs. 1 and 3). For suspended
leaves, we design three-dimensional printed hollowed
structures to support the samples [11]. Such a simple
setting can reduce the gravity effect on pattern formation
upon water absorption (see Figs. 1 and 4). We design a
simple test to explore water-affected pattern transition [11].
The buckling wavelength of a floating sheet taken out of
water increases, while that of a suspended one put on water
decreases. This fact suggests that suspended and floating
shapes can interconvert into one another. Such intercon-
version, indeed, proves the interplay between internal
growth-induced stresses and external support from the
water (liquid substrate), which significantly affects the
morphogenesis of growing tissues. In addition, we can
flexibly program the water absorption area on the sheet
surface to mimic various growth conditions, such as
homogeneous or inhomogeneous in-plane growth,
growth-induced moment, and partial liquid foundation,
in order to realize targeted morphological patterns [11].
Our experiments not only reproduce the diverse morpho-
genesis of natural leaves (consistent with our theoretical
predictions), but also shed light on designs of wrinkle-
tunable multifunctional membrane surfaces and structures,
based on our fundamental understandings and models.
In summary, we have revealed diverse growth-induced

morphogenesis and pattern evolution of terrestrial and
aquatic plant leaves such as lotus and water lilies, which
can be well predicted by our theory, in good agreement with
carefully designed experiments. A remarkable finding lies in
the water (liquid substrate) effect on the shape selection of
leaves. Precisely, leaves floating on the water exhibit short-
wavelength edge wrinkling that decays toward the center,
while the ones growing above the water usually morph into

global bending cone shape with long rippled waves near the
margin. Notably, leaves of Victoria water lily with partial
water support (local effect) are prone to grow into a bowllike
shape. Besides, other influencing factors, such as mechanical
constraints from the stem or vein, heterogeneity-induced
growth curvature and size effect, can alter the shape of
leaves. Understanding growth-triggered morphological evo-
lution and in particular the dependence of wrinkling behav-
ior on liquid foundation can help design biomimetic
deployable structures that quantitatively harness surface
instabilities using substrate or edge actuation.
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