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Tensor-network states (TNS) are a promising but numerically challenging tool for simulating two-
dimensional (2D) quantum many-body problems. We introduce an isometric restriction of the TNS ansatz
that allows for highly efficient contraction of the network. We consider two concrete applications using this
ansatz. First, we show that a matrix-product state representation of a 2D quantum state can be iteratively
transformed into an isometric 2D TNS. Second, we introduce a 2D version of the time-evolving block
decimation algorithm for approximating of the ground state of a Hamiltonian as an isometric TNS—which
we demonstrate for the 2D transverse field Ising model.
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Overcoming the exponential growth of complexity when
simulating quantum many-body systems is one of the most
challenging goals in computational physics. For ground
state properties of one-dimensional (1D) systems this
challenge was answered by the density matrix renormal-
ization group (DMRG) algorithm, which provides an
essentially exact numerical solution of gapped 1D lattice
models [1] and field theories [2]. Subsequently understood
as a variational method over the class of matrix-product
states (MPS) [3,4] its success follows from the ability of
MPS to adequately capture the area-law entanglement
characteristic of gapped ground states [5,6]. A central goal
has been to generalize the success of DMRG to higher
dimensions. For certain classes of states, this is achieved
by so-called tensor-network states (TNS) whose connec-
tivity reflects the geometry of many-body entanglement
[7,8]. However, while evaluating properties of 1D MPS is
highly efficient, exactly evaluating properties of TNS in
higher dimensions is generically exponentially hard.
Consequently, there has been a long-standing effort to
determine the best way to numerically approximate TNS
contractions in order to minimize the variational energy of
TNS for a given Hamiltonian. Progress has been made for
two-dimensional (2D) systems by introducing a number of
algorithms to manipulate and optimize TNS for various
lattice models [7–22]. However, at this point it is fair to
say that the “right” way to generalize 1D DMRG is not yet
agreed upon.
In this work, we study a restriction of the TNS ansatz,

which we dub “isoTNS,” which allows for highly efficient
contraction of the network. When collapsing either the
rows or columns of the 2D network it reduces to the
canonical form of a 1D MPS [23,24]. As a result, any 1D
MPS algorithm, such as DMRG [1] or the time dependent
block decimation (TEBD) [23], can be turned into a 2D

algorithm by applying it in a nested loop with respect to the
rows and columns of the 2D isoTNS. While the ansatz we
discuss is known to some practitioners [25], and is related
to a previous work on correlated contour states [26], it does
not seem to have been studied in practice. Here, we
introduce a key procedure for manipulating isoTNS, the
“Moses move” (MM), and demonstrate its utility with two
concrete applications: First, we show that a 1D MPS
representation of a 2D quantum state can be iteratively
transformed into an isoTNS, and examine the resulting
entanglement properties. Second, we implement a
“TEBD2” algorithm and use it to approximate the ground
state of the 2D transverse field Ising model as an isoTNS.
The isometric tensor-network ansatz.—We first review

the canonical form of a 1DMPS (see Refs. [27,28] for more
details). Suppressing the indices of all tensors, the MPS for
anN-site chain takes the formΨ ¼ T1T2 � � �TN . Here, each
Ta is a rank-3 tensor which we view as a χa−1 × χa matrix
in an “ancilla space” whose entries are vectors in the
d-dimensional single-site Hilbert space of site a.
Multiplication of the matrices implicitly comes with a
tensor product over the single-site Hilbert spaces, produc-
ing an N-site wave function. At the boundaries, χ0 ¼
χN ¼ 1. For any contiguous region of spins V ¼ a∶b, the
partial contraction TV→∂V ≡ Ta � � �Tb is a linear map from
the Hilbert space HV of the subregion to the χa−1 × χb
dimensional Hilbert space H∂V of the ancillas dangling
from the boundary of the region. The “canonical form
with l-site center” is defined by requiring that the boundary
map TV→∂V is an isometry if V ¼ 1:a for a < l or
V ¼ a:N for a > l. Recall a map is an isometry if
T†
V→∂VTV→∂V ¼ 1∂V , while TV→∂VT†

V→∂V ¼ PV is a pro-
jection operator. The isometry condition ensures the ancil-
las on ∂V form an orthonormal sub-basis for V. In what
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follows, we denote the isometry conditions graphically
by assigning arrows to the tensors as shown in Fig. 1(a)
[29–31]. A convenient notation for the representation of
MPS with l-site center is to distinguish the tensors A, Λ, B
and write

Ψ ¼ A1A2 � � �Al−1ΛlBlþ1 � � �BN ð1Þ

as shown in Fig. 1(b). It is easy to verify that the canonical
form is satisfied if and only if each Aa, Ba is individually an
isometry from the left and right, respectively. TV→∂V is an
isometric boundary map if and only if the boundary ∂V has
only outgoing arrows. On the other hand, a region with only
incoming arrows, like the Λ, is precisely the wave function
of the system expressed in an orthonormal basis, so it is
called an orthogonality center. In particular, kΨk ¼ kΛk
and any site-l expectation value can be locally computed as
hΨjOljΨi ¼ hΛjOljΛi, as seen in Fig. 1(c), because the A,
B tensors in its exterior contract to 1 by the isometry
condition.
Once the canonical form is understood as a restriction on

the boundary maps, it can naturally be generalized to higher
dimensions. By analogy to Eq. (1), we demand that each
row and column of the TNS is an isometry, as indicated in
Fig. 1(d). This constraint can be satisfied by further
demanding that each tensor is an isometry from a physical
and two ancilla legs to the remaining two ancillas according
to the direction of the arrows indicated. This gives a causal

structure to the tensor network, though in our convention
time flows opposite to the direction of the arrows. As in 1D,
there is a set of spacelike hypersurfaces with only outgoing
arrows whose “past” defines the wave function in a
orthonormal basis and whose “future” is an isometric
boundary map. An expectation value hΨjOjΨi depends
only on the tensors in the past of the insertion O. This is
more than an analogy: the network between two spacelike
surfaces defines a Kraus decomposition of a quantum
channel relating the boundary ancilla.
There are a special row and column Λ [highlighted in red

in Fig. 1(d)] which has only incoming arrows, which is
hence the 1D “orthogonality hypersurface” of the TNS.
Because its exterior is an isometry from the physical to the
incoming ancillas, Λ is the wave function of the system in
an orthonormal basis. Hence, Λ can be treated just like an
MPS and can itself put into 1D canonical form (conse-
quently its orthogonality center tensor λ can be moved
freely using the standard 1D algorithm). Tracing over the
left or right ancillas of Λ results in a density matrix which is
isospectral to the reduced density matrix of the right or left,
e.g., ρL ∼ ΛΛ†, so Λ encodes the entanglement spectrum.
For any operator O inside Λ, hΨjOjΨi ¼ hΛjOjΛi, e.g.,
there is a dimensional reduction to a 1D expectation value
which can be computed efficiently without further approx-
imations via standard MPS algorithms. This is in stark
contrast to generic TNS where expectation values require
an approximate contraction of the entire network using,
e.g., boundary MPS [8] or corner transfer matrices [9,10].
Furthermore, any variationally optimal compression of the
orthogonality hypersurface Λ is variationally optimal for
the global state. Note that by our choice of isometries, the
resulting orthogonality hypersurface Λ has minimal entan-
glement for each vertical cut and is expected to follow a 1D
area law. This entanglement is different from the vertical
entanglement of the full many-body wave function: it
differs by the action of the isometries, which contain the
2D area-law entanglement.
It is an interesting and open question how the variational

power of an isoTNS differs from that of a generic TNS. One
restriction is that many of its correlations must decay
exponentially, because any two-point function along the
orthogonality hypersurface can be reduced to that of the
MPS Λ, which must have exponentially decaying correla-
tions. In contrast, a generic 2D TNS can represent power-
law correlations. On the other hand, we have shown that
any string-net state, thought to represent all 2D topological
orders with gappable edges, can explicitly be put into
isoTNS form [32].
Shifting the orthogonality hypersurface.—The canonical

form is only useful for computational purposes if the
orthogonality hypersurface Λ can be moved throughout
the network efficiently. In 1D, for example, the basic
move ΛlBlþ1 ¼ AlΛlþ1 can be accomplished by any
orthogonal matrix factorization, i.e., QR or a singular value

(b)

(c)

(a) (d)

λ

FIG. 1. Schematic representation of the canonical form in 1D
and 2D. (a) Left and right isometries are represented by arrows
whose orientation indicates whether A†A ¼ BB† ¼ 1. We view
the isometry as an RG-like procedure from the large Hilbert space
(incoming arrows) to the smaller one (outgoing arrows). In the
case of higher-rank tensors, the contraction A†A ¼ 1 is always
over all the incoming arrows. (b) A 1DMPS can be brought into a
mixed canonical form with orthogonality center Λ. Note that each
dangling physical index implicitly has an incoming arrow.
(c) Expectation values of local operators can be directly obtained
from Λ. (d) 2D canonical form with “orthogonality hyper-
surfaces” Λ (column and row highlighted in red). The orthogon-
ality center λ is marked by a red dot. In blue we indicate an
example of a subregion with only outgoing arrows, whose
boundary map is consequently an isometry.
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decomposition (SVD). In 2D we need to solve the same
equation but with A,Λ, B entire columns of the TNS. Using
QR or SVD is hopeless, as it will destroy the locality
required to express Λ as an MPS. The key insight is that the
canonical form can be preserved under a unitary insertion
ðAlU†ÞðUΛlþ1Þ. We propose to use this ambiguity to
choose Al such that it “disentangles” Λlþ1, so that Λlþ1

has an efficient (low rank) MPS form.
It is actually sufficient to solve a simpler auxiliary

problem: decompose Λl ¼ AlΛ, where Λ is a wave
function with only ancilla degrees of freedom (d.o.f.)
(a “zero-column” wave function). The start and end points
of the problem are shown in sequences (i) and (v) of
Fig. 2(a). This move will be sufficient to move Λl

throughout the network, because we can tack the zero-
column wave function onto the right in order to obtain the
one-column wave function, Λlþ1 ¼ ΛBlþ1.
We can solve Λl ≈ AlΛ as a variational problem,

sweeping back and forth through the tensors to minimize
kΛl − AlΛk while respecting the isometry condition on A
and reducing the bond dimension of Λ [33]. Interestingly,
however, we find a single unzipping sweep based on
disentangling provides a solution very close to the varia-
tional one [33], but is far quicker. This “Moses move”
(MM) is illustrated in sequences (i) to (v) of Fig. 2(a).
The central subproblem of the MM [Fig. 2(b)] takes

in the orthogonality center jλi, which by grouping legs is a

tripartite state jABCi on the top, lower left, and lower right
d.o.f., and “splits” it into a four-partite state jABLBRCi.
More precisely, we look for the splitting isometry
a†∶B → BL ⊗ BR, where a†a ¼ 1 and BL=R have dimen-
sion χ, such that jABLBRCi ¼ a†jABCi has minimal
entanglement SABL∶BRC. This is closely related to finding
the entanglement of purification [34] of ρAC. To do so we
make an initial (suboptimal) guess for the isometry a0
chosen so thatBLBR includes the χ2 highest weight states in
B, and then parametrize the optimal choice as a ¼ a0U† for
a unitary U acting on BLBR. We choose U to minimize
SABL∶BRC or its Renyi generalization [35], a well-defined
optimization problem [36,37]. The resulting a comprise the
isometries in Al, allowing us to successively unzip Λl into
AlΛ. We do not have a rigorous proof regarding the success
of the MM but instead we will consider two practical
numerical tests in the following.
MPS to isoTNS.—Given a ground state wave function

jΨi on an Lx × Ly strip, we propose an iterative algorithm
to put jΨi into an isoTNS which we test for the transverse
Ising model H ¼ −

P
hi;ji σ

z
iσ

z
j − g

P
i σ

x with Pauli matri-
ces σμ. To implement it numerically, we consider a strip
with Ly ≫ Lx and use DMRG to obtain the ground state as
a 1D MPS Λ1∶Lx where each “site” contains the Lx spins of
the corresponding row [Fig. 3(a)]. As described in Fig. 3,
the MM can then be used to iteratively peal off columns
of the wave function Λl∶Lx ¼ AlΛlþ1∶Lx , producing an
isoTNS. The algorithm is exponentially difficult in Lx
(since Ψ is obtained as an MPS), but serves as a check on
the ansatz independent of a ground state search scheme.
Using an ancilla dimension χ ¼ 6 for the isometries, the
error kjΨMPSi − jΨisoTNSik2 is 2 × 10−6 per site at g ¼ 3.5
(paramagnetic phase), Ly ¼ 20, Lx ¼ 6, χMPS ¼ 128,
obtained in about ten minutes on a laptop.
More interesting is the behavior of the “vertical” (top and

bottom) and “horizontal” (left and right) entanglement of
the resulting isoTNS. At each step l the orthogonality
hypersurface Λlþ1∶Lx makes a “⌝” shape, running up the
right and over the top. In Fig. 3(b) we show the entangle-
ment entropy SlðyÞ for cuts along Λ, and find Sl decrease
with l. If the underlying phase has area law SR ¼
sj∂Rj þ � � �, for y ∼ Ly=2 we hope Sl goes as Sl ≈
sðLx − lÞ þ � � �. If not, the isometric columns Al are not
removing their share of the entanglement and the algorithm
will fail in the thermodynamic limit. In Fig. 3(c), we see
that after the initial delay the algorithm begins to remove
remarkably close to s entanglement per iteration. The initial
delay is expected, because any two vertically entangled
d.o.f. will individually have some horizontal extent. Until
their entire support is to the left of Λ, the isometries A
cannot remove them. The residual horizontal entanglement
is left behind in the top region of Λ. As hoped for, the
horizontal entanglement is of the order of s, and for l ¼ Lx
we find Sl smoothly matches up between the right and

(a)

(b)

FIG. 2. The Moses move. (a) The orthogonality hypersurface
Λl is split into the product of a left isometry Al and a zero-
column state Λ with no physical indices. The unzipping is
performed by successively applying the splitting procedure
shown in panel (b). The legs of the center site λ are grouped
into a tripartite state jABCi which is “split” into three tensors in
two steps: first find jABCi ≈ a0U†jABLBRCi for an initial guess
of the isometry a0 and unitary U which minimizes the entangle-
ment across the vertical bond highlighted in red; second set
a ¼ a0U† and split jABLBRCi in two via SVD. The resulting a
comprise the tensors in Al, and the choice of U will produce a Λ
with minimal vertical entanglement.
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top regions, despite the seemingly anisotropic nature of
the algorithm.
TEBD2 algorithm.—We now propose a Trotterized time

stepper for isoTNS which can be used to obtain the ground
state by imaginary-time evolution. Assuming a nearest-
neighbor interaction, we split the Hamiltonian into terms

acting on columns and rows, H ¼ PLx
c¼1Hc þ

PLy

r¼1Hr.
We Trotterize according to e−τH ≈

Q
r e

−τHr
Q

c e
−τHc as

illustrated in Fig. 4(a). As for the TEBD update in 1D, the
TEBD2 can be easily improved to second order. We start in
canonical form with the orthogonality center λ1;1 at site c,
r ¼ 1, 1. The evolution e−τHc¼1 is then applied to column
Λ1 by calling the standard 1D TEBD algorithm [23] at a
cost ∝ χ6. We then use the MM to bring the orthogonality
center over by one column, to λ2;1 at a cost ∝ χ7, and apply
Hc¼2, and so on, bringing the orthogonality center to λLx;1

(in contrast, the full update of an unconstrained PEPS costs
χ12 [8]). Applying e−τHr analogously brings the center to
λLx;Ly , and we repeat to bring λ counterclockwise around
the four corners to complete the time step. Within a sweep
the algorithm is literally two nested versions of 1D TEBD,
hence the name TEBD2.

To benchmark TEBD2, we return to the transverse field
Ising model. Figure 4(c) shows the energy density obtained
from TEBD2 relative to numerically exact results from
large scale 1D-DMRG simulations at g ¼ 3.5. If the
evolution were exact the energy would decrease monoton-
ically as the Trotter step dτ is decreased. However, the MM
has a small truncation error ϵMM, and we see that the
resulting energy has a minimum in dτ. For a pth order
Trotter step, the energy error should be ΔE ¼ aϵMM=dτ þ
bdτ2p (in our implementation p ¼ 2) [38], in agreement
with the observed minima. A similar effect is also observed
in the full update of TNS, and can be partially remedied by
using a variational update instead of imaginary-time evo-
lution [16,17]. The minimum energy converges towards the
exact result as the bond dimension χ is increased.
Conclusions.—We introduced an isometric TNS ansatz

which results in a canonical form that allows for 1D MPS
algorithms to be efficiently adapted to 2D. To numerically
benchmark the ansatz, we first demonstrated that an MPS
representation of the ground state of the 2D transverse field
Ising model can be efficiently transformed into an isoTNS.
Second, we implemented a TEBD2 algorithm and showed
that it efficiently finds an approximation of the ground state
of the 2D TFI model within the isoTNS form.

We thank B. Bauer, M. Fishman, J. Haah, S. Lin,
R. Mong, M. Stoudenmire, A. Turner, XL. Qi, and

(a) (b)

(c)

λ1,1

FIG. 4. The TEBD2 algorithm: (a) Trotterization of e−τHr=c into
a product of two-site terms acting on a single row or column of
the isoTNS. (b) To complete one time step, the 1D update is
applied to all rows or columns by first applying the TEBD sweep
and then sequentially shifting the orthogonality center λc;r using
the MM. Note that the update of one row or column reverses the
arrows twice, e.g., the TEBD sweep moves λc;r from the top to the
bottom and then MM moves it up again. (c) Error densities of
the energy of the transverse field Ising model with g ¼ 3.5 for
different system sizes and maximal bond dimensions χ as
function of the Trotter step size dτ.

(c)

(a)

(b)

FIG. 3. The MPS to isoTNS algorithm: (a) The MPS Λ1∶Lx for
an Lx × Ly strip is fed into the MM by treating the legs of the
first column as the left ancilla and the remaining columns as the
right ancilla to obtain Λ1∶Lx ¼ A1Λ2∶Lx . The renormalized wave
function Λ2∶Lx is then reshaped by viewing the legs of the second
column as physical, and its vertical arrows are reversed down-
wards using the standard 1D MPS canonicalization algorithm.
Applying the MM again, we can repeat to obtain a canonical
TNS. (b) Entanglement entropy Sl for the sequence of orthogon-
ality hypersurfaces (highlighted in red) after l iterations. y runs
from bottom right, to top right, to top left. (c) Sl for a cut at
y ∼ Ly=2, compared against the bulk area law determined
from DMRG.
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