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We present conductance-matrix measurements of a three-terminal superconductor-semiconductor hybrid
device consisting of two normal leads and one superconducting lead. Using a symmetry decomposition
of the conductance, we find that antisymmetric components of pairs of local and nonlocal conductances
qualitatively match at energies below the superconducting gap, and we compare this finding with symmetry
relations based on a noninteracting scattering matrix approach. Further, the local charge character
of Andreev bound states is extracted from the symmetry-decomposed conductance data and is found to
be similar at both ends of the device and tunable with gate voltage. Finally, we measure the conductance
matrix as a function of magnetic field and identify correlated splittings in low-energy features,
demonstrating how conductance-matrix measurements can complement traditional single-probe measure-
ments in the search for Majorana zero modes.
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Symmetry relations for quantum transport are often
connected to deep physical principles and make strong
predictions for comparison with experiment. For instance,
the Onsager-Casimir relations [1–3] arise from microscopic
reversibility and were central in early studies of quantum-
coherent transport [4–6]. Later, predicted departures from
these relations due to interaction effects [7–9], which
include bias dependence of the effective potentials, were
observed in nonlinear transport [10,11]. The introduction of
superconducting terminals results in additional symmetries,
as conductance occurs via Andreev reflection from elec-
trons to holes, and is invariant under particle-hole con-
jugation [12]. For a two-terminal normal-superconducting
device, the conductance gðVÞ is a symmetric function of
bias voltage V neglecting interaction effects. As shown in a
partner theoretical Letter, for multiterminal superconduct-
ing devices gðVÞ need not be symmetric, although a curious
relation exists between the antisymmetric components of
the local and nonlocal conductances [13]. These predictions
have, to our knowledge, not been tested.
Hybrid superconductor-semiconductor nanowire struc-

tures have recently become a topic of intense interest
[14–19], motivated in part by proposals for achieving
topological superconductivity and Majorana zero modes
(MZMs) [20,21]. In two-terminal superconductor-
semiconductor devices, observed asymmetries in the sub-
gap conductance [22] have been suggested to arise from a
dissipative fermionic reservoir, effectively acting as a third

lead [23], although, as in the normal-conducting case [3],
bias dependence of the self-consistent potential can also
cause a deviation from symmetry [24]. Multiterminal
superconducting devices are a topic of particular interest,
as they can be used for MZM [25–31], Cooper-pair splitter
[32,33], and multiterminal Josephson studies [34–38]. In
multiterminal superconducting quantum dot devices, bias
asymmetries have been observed [39] and a relationship
between nonlocal conductance and the bound-state charge
has been proposed [40,41].
In this Letter, we report a symmetry analysis of the

conductance matrix measured in a three-terminal, super-
conductor-semiconductor hybrid device. The antisymmet-
ric components for pairs of conductance-matrix elements
are found to qualitatively match at energies below the
superconducting gap, with quantitative departures that
scale with bias voltage and increase in isolated gate-voltage
regions. We use the symmetry-decomposed nonlocal con-
ductance to extract the local charge character of states
within the superconducting gap as a function of gate
voltage, discovering that the charge is approximately equal
on both sides of the device. Finally, we measure local and
nonlocal conductances at nonzero magnetic field and
identify isolated low-energy states with correlated splittings
on each end of the wire, using inferred charge as an
additional spectroscopic tool for comparison with theory.
This work provides new methods for studying the local
charge density of subgap bound states and distinguishing
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between topological and trivial states. More generally, it
provides a better understanding of the role of symmetry in
multiterminal superconducting quantum devices.
Selective area growth (SAG) of InAs nanowires [42,43]

is performed by chemical beam epitaxy (CBE) on an InP
substrate masked with silicon oxide [44]. The nanowire is
half covered by an Al film, which was deposited in situ
after CBE growth, and is selectively etched to form a
superconducting lead. The device [Fig. 1(a)] consists of
two normal Ti=Au electrodes (yellow), a central semi-
conducting region proximitized by Al (blue), a global HfOx
dielectric layer, and Ti=Au electrostatic gates (red). We
emphasize that the superconducting lead is deposited
during growth and contacted remote from the delicate
superconductor-semiconductor interface, a benefit of the
SAG approach.
Conductance is measured by applying a dc bias voltage

Vbias ¼ VRðLÞ and an ac voltage δVRðLÞ at the right (left)
terminal with two different ac excitation frequencies fR ∼
18 Hz and fL ∼ 42 Hz. The in-phase ac current δIRðLÞ
flowing to the right (left) side is measured with the middle
superconducting lead grounded. The device is tunnel
coupled to the normal leads by adjusting the two tunnel-
gate voltages to Vgr ¼ −0.485 V and Vgl ¼ −1.29 V, such
that g ≪ e2=h, which also ensures that the applied voltages
drop over the tunnel barriers. We have checked for spurious
voltage divider effects using a four-probe measurement on
a cold-grounded device, and do not find deviations from
the data presented here. The plunger gate voltage Vp is used
to tune the chemical potential of the semiconductor. All
measurements are performed at base temperature of a
dilution refrigerator.
The experimental setup allows the measurement of the

2 × 2 conductance matrix,

g ¼
�
gLL gLR
gRL gRR

�
¼

" δIL
δVL

− δIL
δVR

− δIR
δVL

δIR
δVR

#
; ð1Þ

where the sign convention is chosen for compatibility with
standard two-terminal measurements of gLR.
Figure 1(b) shows gLL as a function of VL with VR ¼ 0.

Several peaks occur symmetrically around zero bias. We
assign the two highest energy peaks to coherence peaks, a
signature of the Bardeen-Cooper-Schrieffer (BCS) density
of states in the proximitized semiconductor with an induced
gap Δ ∼ 250 μeV, in agreement with previous observation
for similar material systems [43,45]. The other peaks are
subgap states with energies E0 < Δ. Both the high-bias
conductance (VL > Δ) as well as the subgap peak heights
are asymmetric in bias [Fig. 1(b)]. The nonlocal conduct-
ance gLR, measured as a function of VR with VL ¼ 0 in
Fig. 1(c), exhibits features corresponding to the peaks in
gLL. The sign of the peak amplitudes in gRL, however,
changes with a sign change in bias, indicating a strong odd
component. The remaining conductance-matrix elements

gRR and gRL were also measured and exhibit similar
features [46].
To further explore the symmetry properties, the con-

ductance traces are decomposed into their symmetric,

gsðVbiasÞ ¼
1

2
½gðVbiasÞ þ gð−VbiasÞ�; ð2Þ

and antisymmetric,

gasðVbiasÞ ¼
1

2
½gðVbiasÞ − gð−VbiasÞ�; ð3Þ

parts. Figure 1(d) shows gasLL as a function of VL, which
bears a qualitative resemblance to gLR. In fact, gasLR, the
antisymmetric component of gLR, closely matches gasLL
[dashed line in Fig. 1(e)] for low bias, with some quanti-
tative departures observed at high bias. Reference [13]
discusses the identified symmetry relation, gasLR ¼ gasLL,
as an underlying symmetry of the scattering matrix for
Vbias < Δ. Departures from this symmetry can result from
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FIG. 1. (a) Colored scanning electron micrograph of the three-
terminal device and schematic of the measurement setup. (b) Left
side local conductance gLL as a function of left side bias voltage
VL. (c) Left side nonlocal conductance gLR as a function of right
side bias voltage VR. (d) Extracted antisymmetric component of
the local conductance gasLL with respect to VL. (e) Extracted
antisymmetric component of the nonlocal conductance gasLR with
respect to VR. The blue dashed line shows gasLL for comparison.
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bias-voltage dependence of the effective potentials [3],
single-particle scattering into the nominally superconduct-
ing lead [13], or inelastic processes within the hybrid region
[23]. Above the superconducting gap, departures from
symmetry scale smoothly with bias voltage, and we have
found they persist even when one lead is completely
pinched off, which would seem to favor an explanation
based on bias-dependent potentials. In addition, we have
found that the observed symmetry departures have rela-
tively little field dependence, suggesting that they are not
due to the presence of dissipation from vortices.
Next, we investigate the conductance matrix as a

function of gate voltage. Figure 2(a) shows gLL (gLR) as
a function of Vp and bias VL (VR). gLLðVpÞ makes the
assignment of coherence peaks and subgap states clearer.
The coherence peaks do not move when changing the gate
voltage, while subgap states appear at different bias
voltages for different Vp. We attribute these subgap states
to Andreev bound states (ABSs), although it is not entirely
clear where the states are confined. We speculate that
confinement could result from a Fermi velocity mismatch
between the InAs and the Al or disorder in the system.
The ABS subgap features are visible as peaks in the
nonlocal conductance gLR as well. Pairs of ABS resonances

at positive and negative bias are found to have opposite
sign, again indicating a primarily odd functional form.
Symmetry decomposing the datasets as a function of bias
yields gasLL and gasLR [Fig. 2(b)], which show a correspon-
dence in general, indicating that the symmetry relationship
identified in Fig. 1 is robust as a function of gate voltage.
However, in addition to the quantitative high-bias discrep-
ancies already identified in Fig. 1(e), there are isolated
regions in Fig. 2(b) where gasLL and gasLR qualitatively differ,
associated with crossing of subgap states, e.g., around
Vp ∼ −3.64 V; these regions are presently not understood.
It is interesting to note that ABSs with the same slope

with respect to Vp have the same sign in gLR. Further,
where the slope changes sign, i.e., at inflection points,
the nonlocal conductance disappears and changes sign as
well [Fig. 2(a)]. Reference [13] shows that, for a spectrally
isolated subgap state at energy E0, the sign of the nonlocal
conductance at bias voltages near V0 ¼ E0=e is generally
related to the state’s local charge density. The symmetric
part of the conductance, for a bound state coupled to the left
(right) leads at rate ΓLðRÞ and energy jE0j > ΓLðRÞ; kBT is

gsRLðV0Þ ¼ aqLqR; ð4Þ

and the antisymmetric part is

gasRLðV0Þ ¼ anLqRsgnðV0Þ; ð5Þ

where qLðRÞ ¼ u2LðRÞ − v2LðRÞ is the local charge density,

nLðRÞ ¼ u2LðRÞ þ v2LðRÞ is the local probability density, and

uLðRÞ, vLðRÞ are the left (right) Bogoliubov–de Gennes
amplitudes. The general expression for a is cumbersome,
but in the limiting case ΓLðRÞ ≫ kT it takes the simple form,
a ¼ ð2e2=hÞ½ΓLΓR=ðΓLnL þ ΓRnRÞ2�. Similar expressions
also hold for gLRðV0Þ. As a consequence, there is a
proportionality between the symmetry-decomposed non-
local conductance and the local charge densities,
gsRLðV0Þ ∝ qLqR and ðgasLRÞðgasRLÞ ∝ qLqR.
Proportionality constants can be eliminated by consid-

ering the ratio of conductances,

QL ≡ gsRLðV0Þ
gasRLðV0Þ

sgnðV0Þ ð6Þ

¼ u2L − v2L
u2L þ v2L

: ð7Þ

QL is a measure of the local charge character;QL ¼ þ1 for
a state that is locally electronlike (u ≫ v), andQL ¼ −1 for
a state that is locally holelike (v ≫ u).
Motivated by these theoretical relations, we compare in

Fig. 3(a) the measured symmetric component of a single
nonlocal conductance gsRL, with the product of the anti-
symmetric components of both nonlocal conductances,
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FIG. 2. (a) Local conductance (left-hand panel) and nonlocal
conductance (right-hand panel) as a function of plunger gate Vp
and bias voltage. (b) Antisymmetric components of local (left)
and nonlocal conductance (right) as a function of plunger gate Vp
and bias voltage. The colored lines indicate the location of the
cuts for the local (blue) and nonlocal (orange) traces in Fig. 1.
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ðgasLRÞ × ðgasRLÞ. The plots in Fig. 3(a) are qualitatively
similar, as expected from Eqs. (4) and (5), and suggest
that gate dependence of the BCS charge has a dominant
effect on the conductance of subgap peaks. To further
explore the charge of subgap states, the data are analyzed
by extracting peak positions of the ABS resonances from
gLL. Decompositions of the nonlocal conductance are
evaluated at these positions to obtain gsRLðV0Þ and
gasRLðV0Þ. QL is calculated from the peak values for two
different subgap states [orange and green lines in Fig. 3(a)].
The local charge character for these states oscillates as a
function of Vp, highlighting the gate-tunable charge char-
acter of bound state [orange and green markers in
Fig. 3(b)]. Sign changes of QL indicate that the state is
changing from electronlike to holelike, or vice versa. We
note that, based on Eq. (6), sign changes gasLR cause sign
changes in QL. Hence, the correlation between the sign of
the nonlocal conductance and dE0=dVP is consistent with

the charge interpretation. Using gLR, QR can be analo-
gously calculated [open markers in Fig. 3(b)], and it is
found to be similar to QL for both bound states, within
experimental error [46]. The similarity betweenQL andQR
suggests that the particle and hole wave function compo-
nents, u and v, are rigid on the length scale of the present
device, which is unusual for mesoscopic devices where
wave functions are often considered to be random and
uncorrelated in space.
In theory, when u and v are spatially uniform Ref. [13]

predicts that a symmetry relation emerges:

gsLLðV0ÞgsLRðV0Þ ¼ 2½gasLRðV0Þ�2 − ½gsLRðV0Þ�2: ð8Þ

A parametric plot of the left-hand side vs the right-
hand side of Eq. (8) for all identified peaks in the dataset
reveals that these quantities are approximately equal
[Fig. 3(c)], supporting the view that the coherence factors
are spatially uniform. Indeed, performing a linear fit of the
data gives a slope of 0.98� 0.03 with a small intercept
ð0.005Þ2 � ð0.002Þ2ðe2=hÞ2, indicating a good general
agreement with the relationship predicted by Eq. (8).
However, there are regions of gate voltage where system-
atic deviations from linear behavior are observed, including
the previously discussed region VP ∼ −3.64 V, where
feature crossings are observed in gLR.
Having established the nonlocal conductance as a tool

for characterizing subgap states, we now apply a magnetic
field while measuring the conductance matrix. Figures 4(a)
and 4(d) show the evolution of gLL and gRR in a magnetic
field B applied parallel to the wire. The ABSs evolve as a
function of B as detected from both ends of the device. As
the field initially increases, the low-lying states split. The
upper-split states are repelled from higher-lying states, and
the lower-split states eventually merge at zero energy. For
further increases in field, the low-energy states oscillate
around zero energy, a signature typically attributed to
hybridized MZM in devices comparable in length to the
coherence length [17]. The correlated splitting of zero-bias
peaks, measured from both wires ends, was proposed as a
“smoking gun” signature of MZM [25], but given the
presence of strong correlations at zero magnetic field in
this device [31], we suggest that this signature is not by
itself conclusive.
The nonlocal conductances gLR and gRL [Figs. 4(b)

and 4(c)] as a function of field have asymmetric features
corresponding to subgap states in the local conductance,
and also exhibit several changes in sign. To study the sign
of gRL for the low-energy features, peaks in the local
conductance gLL are determined [orange line in Fig. 4(c)],
and the peak nonlocal conductance gRLðV0Þ is extracted at
these points. Of particular interest is the behavior at the
field B� ∼ 0.6 T, where the energy of the oscillating states
has a turning point. The nonlocal conductance at B� is
nonzero [Fig. 4(e)], inconsistent with the expected behavior
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nonlocal conductance as a function of plunger gate voltage and
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energy (orange) and low-energy (green) ABS. (b) Local charge
character Q [see Eq. (6)] as a function of Vp for a higher-energy
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character [46]. (c) Left side vs right side of Eq. (8) for all
identified subgap peaks V0. Dashed line indicates perfect agree-
ment (slope ¼ 1, intercept ¼ 0).
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for hybridized MZMs, which are chargeless at turning
points and therefore have vanishing nonlocal conductance
[13,47]. At a higher field B�� ∼ 1 T, there is a second
turning point where the nonlocal conductance is small,
consistent with the behavior expected for chargeless,
hybridized MZMs [48].
Nonlocal transport gives evidence against a

Majorana interpretation at intermediate fields (B < B��).
Intermediate-field effects in hybrid nanowires, in particular
the possibility of quasi-Majorana modes that emerge before
the true topological transition [29,49–52], have been
discussed at length in the literature. It is, to the best of
our knowledge, an open theoretical problem to check if
quasi-Majorana modes, or other effects [53], can explain
the anomalous charge character that we have inferred

near B�. At higher fields (B > B��), nonlocal transport
does not rule out a topological regime, but an examination
of more datasets, and longer device lengths, is required to
reach a firm conclusion.
In summary, the observed approximate symmetry rela-

tions are consistent with a noninteracting scattering picture
and justify the use of symmetry-decomposed conductance
to infer the BCS charge. At finite field, we have observed
correlated splittings of zero-bias peaks, but find that at
intermediate fields their charge character is not consistent
with a simple Majorana picture. We anticipate that mea-
surements of the local (on-diagonal) conductance, com-
bined with the insights from the nonlocal (off-diagonal)
conductance, will play an important role in substantiating
the existence of MZMs.
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