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We investigate pattern revivals in specially designed optical structures that combine different transverse
modes. In general, the resulting pattern is not preserved under free propagation and gets transformed due to
nonsynchronized Gouy phases. However, it is possible to build structures in which the Gouy phases
synchronize at specific fractional values, thus recovering the initial pattern at the corresponding
longitudinal positions. This effect is illustrated with a radially structured light spot in which the beam
energy can be addressed to different positions without the need of intermediate optical components, which
can be useful for optical communications and optical tweezing with structured beams.
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The transverse structure of optical beams has been widely
used for encoding information both in the classical and
quantum domains [1,2]. Transmission and amplification of
images and patterns either in free space or in optical
resonators is still an active research area. In a multimode
regime, the spatial structure of nonlocal quantumcorrelations
gives rise to interesting and counterintuitive effects such as
the so-called ghost images [3–14]. When few spatial modes
are involved, they can serve as a finite dimension Hilbert
space for encoding quantum information [15–17].
Within the limits of the paraxial approximation, an

arbitrary spatial structure can be expanded in the well-
known Hermite-Gaussian (HG) or Laguerre-Gaussian
(LG) bases that are orthonormal solutions of the paraxial
wave equation. Apart from a transverse rescaling due to
diffraction, the intensity patterns associated to these sol-
utions preserve their shape along free space propagation.
However, their phase evolution depends on the mode
parameters so that intensity patterns composed by different
paraxial modes may not preserve their shape in free space
propagation. In this regard, the Gouy phase plays a crucial
role affecting the relative phase among the modes taking
part in the pattern superposition. For example, this can lead
to self-rotating patterns when different orbital angular
momenta are combined in the mode superposition, as
studied in Refs. [18,19].
Free propagation of spatially modulated beams leads to

surprising features such as the well-known Talbot effect
first noticed by Henry Fox Talbot in the nineteenth century
[20]. He noticed that the spatial modulation imposed by a
diffraction grating would periodically reproduce itself in
the near field pattern. This effect has been also realized in
matter waves [21]. Its origin relies on a periodic synchro-
nization of the individual phase factors that figure on the
contribution from each slit to the propagated field distri-
bution. Interestingly, this kind of pattern revival also

appears in atomic physics, where a localized electronic
wave packet normally spreads with time. However, under
special conditions, the spreading reverses itself and the
wave packet recovers localization. The long-term evolution
of a radially localized electronic wave packet formed by the
coherent superposition of Rydberg states of atomic potas-
sium has been demonstrated in Ref. [22]. A closely related
decay and revival of coherence was predicted and observed
in the micromaser realization of the Jaynes-Cummings
model [23–26].
Nondiffracting and self-imaging beams have been inves-

tigated for a long period due to their potential applications
in microscopy, microfabrication, and optical tweezing
[27,28]. These beams can be engineered by suitably
shaping the transverse Fourier spectrum of the light field,
allowing the preparation of nondiffracting Bessel beams
and projection of a given image to a desired position in
space [29]. In this work, we implement pattern revivals
with a suitable superposition of discrete paraxial modes in
which the Gouy phases synchronize at specific longitudinal
positions. The occurrence of these revivals is related to
fractional Gouy phases determined by the mode orders. We
exploit radially structured Laguerre-Gaussian modes to
construct a self-restoring spot that can be used as the basic
unit of a more complex pattern. This can be useful in
different contexts, including optical imaging, tweezing, and
quantum information platforms. The present work fits
within an emerging line of work on manipulating beams
of light, such as Bessel and Airy beam superpositions [30].
Free space propagation of optical beams in paraxial

regime can be described by two-dimensional (2D) HG or
LG functions. The HG basis for a beam with wave number
k propagating along the z axis reads

umnðx; y; zÞ ¼ Xmðx; zÞYnðy; zÞe−iϕNðzÞ; ð1Þ
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where the Gouy phase

ϕNðzÞ ¼ ðmþ nþ 1Þ arctan ðz=z0Þ ð2Þ

depends on the mode order N ¼ mþ n and the Rayleigh
parameter z0 characterizing the diffraction distance. The
mode functions are of the form

Fmðξ; zÞ ¼
N m
ffiffiffiffi

w
p e−½

ikξ2

2R þξ2

w2
�Hm

�

ξ
ffiffiffi

2
p

w

�

; ð3Þ

where F ¼ X, Y, ξ ¼ x, y, and HmðξÞ is the Hermite
polynomial of orderm. The normalization constantN m, the
wave-front radius RðzÞ, and the beam width wðzÞ are
given by

N m ¼ ð2=πÞ1=4
2m=2m!

; ð4Þ

RðzÞ ¼ z20 þ z2

z
; ð5Þ

wðzÞ ¼
�

2ðz20 þ z2Þ
kz0

�

1=2

: ð6Þ

The origin of the z axis is placed on the focal plane where
the beam width is minimal and the wave front is plane
(R → ∞).
In cylindrical coordinates, paraxial modes can be

expanded in the LG basis,

vplðr; θ; zÞ ¼ Rplðr; zÞeilθe−iϕNðzÞ; ð7Þ

where the Gouy phase now reads

ϕNðzÞ ¼ ð2pþ jlj þ 1Þ arctan ðz=z0Þ; ð8Þ

and the mode order is N ¼ 2pþ jlj. The radial function is
given by

Rplðr; zÞ ¼
N pl

w

�

r
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where Ljlj
p are generalized Laguerre polynomials and the

normalization constant is

N pl ¼
�

2p!
πðpþ jljÞ!

�

1=2
: ð10Þ

Let us consider a normalized pattern composed by d
basic structures with different orders N1; N2;…; Nd,

ψðrÞ ¼
X

d

j¼1

AjφjðrÞe−iϕNj
ðzÞ: ð11Þ

Each basic structure φjðrÞ can be a combination of HG,
LG, or both kinds of modes sharing the same order Nj.
Apart from diffraction, each basic structure evolves with a
stable pattern and acquires a Gouy phase ϕNj

ðzÞ. Because
of the different mode orders present in the superposition,
the Gouy phases will evolve at different rates and ψ will not
keep the original pattern along propagation. However, the
pattern prepared at z ¼ 0 may be repeated if all Gouy
phases resynchronize along propagation, that is, if

ϕNjþ1
ðzÞ − ϕNj

ðzÞ ¼ 2qjπðqj ∈ ZÞ: ð12Þ

For a nonastigmatic beam in free space, this will occur at
specific positions, but due to the limited range of the Gouy
phase, not all multiples can be achieved.
In order to derive the exact location of the revivals, we

first write

ψdðrÞ ¼ e−iϕ̄ðzÞ
X

d

j¼1

AjφjðrÞe−iΔjðzÞ; ð13Þ

where

ϕ̄ðzÞ ¼ 1

d

X

d

j¼1

ϕNj
ðzÞ; ð14Þ

ΔjðzÞ ¼ ϕNj
ðzÞ − ϕ̄ðzÞ: ð15Þ

Note that
P

j Δj ¼ 0, so that the phasors e−iΔj form a
diagonal SUðdÞ matrix evolving along the beam propaga-
tion. A revival will occur when these phasors get aligned
and this matrix structure becomes proportional to the
identity, which can only happen with fractional phase
factors since the evolution is closed in SUðdÞ [31]. To
see this more explicitly, we can use Eqs. (12) and (15) to
arrive at the fractional phase condition

X

d

j¼1

Δj ¼ dΔ1 þ 2π
X

d

j¼2

X

j−1

k¼1

qk ¼ 0;

⇒ Δj ¼
2πrj
d

ðrj ∈ ZÞ; ð16Þ

where r1 ¼ −
P

d−1
k¼1ðd − kÞqk and rjþ1 ¼ rj þ 2dqj.

Therefore, revivals can only be obtained when the frac-
tional phase condition (16) is fulfilled.
Going back to Eq. (12), we obtain the revival positions

from

ðNjþ1 − NjÞsðzÞ ¼ 4qj; ð17Þ

where sðzÞ≡ ð2=πÞ arctanðz=z0Þ. Note that as one moves
from the focal plane (z ¼ 0) to the far field region (z → ∞)
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the parameter s varies continuously between 0 and 1. In
practice, the far field configuration can be approximately
observed at distances z ≫ z0, that corresponds to s ∼ 1.
Revivals require a minimum value (Njþ1 − Nj ≥ 4) for

nonvanishing gaps between consecutive mode orders,
except for the trivial situation in which Njþ1 ¼ Nj, cor-
responding to a pattern composed by modes of the same
order that remain in phase along propagation. In the general
case, for a given set of modes present in the superposition,
the first revivals always occur at the position where 4=sðzÞ
reaches the greatest common divisor DðN2 − N1;…; Nd −
Nd−1Þ of all nonvanishing mode gaps. Then, other revivals
occur at the positions corresponding to the submultiples of
D, reachable within the limits imposed on s. If the mode
gaps do not have a common divisor greater than one, then
revivals never occur, since it would imply the nonphysical
condition s ¼ 4. At the revival positions, the field distri-
bution becomes

ψdðx̄; ȳ; zÞ ¼ eiϕ̄ðzÞe
2iπr
d ψdðx̄; ȳ; 0Þ; ð18Þ

where x̄ ¼ x=wðzÞ, ȳ ¼ y=wðzÞ, and r ¼ minjjrjj.
We now present some interesting numerical examples

and the corresponding experimental results supporting our
theoretical predictions. We demonstrated the revival effect
with the setup shown in Fig. 1. A Gaussian beam from a
He-Ne laser is sent to a spatial light modulator (SLM)
programmed to produce the desired mode superposition.
The screen of the SLM is imaged to a remote position with
a pair of lenses (L1 and L2) to allow acquisition of the
initial image with a charge-coupled device (CCD) camera.
Then, the CCD is translated along the propagation axis z,
starting from the screen image position z ¼ 0.
Many different examples can be produced illustrating the

revival effect based on fractional Gouy phases. We have
observed this in different length scales from a few milli-
meters to a few meters. First, we will focus our demon-
stration on a superposition of three radial LG modes that
define a bright spot at the focal plane and distributes its
energy along propagation. The bright spot gets restored at
the fractional Gouy phase positions. The effect is illustrated
with the following three-mode structure,

ψ3ðrÞ ¼ 0.3v0;0ðrÞ þ v6;0ðrÞ þ v12;0ðrÞ; ð19Þ

carrying l ¼ 0 and p ¼ 0, 6, 12. The mode gaps involved in
the structure given in (19) are N2 − N1 ¼ N3 − N2 ¼ 12,
whose denominators are D ¼ 1, 2, 3, 4, 6, 12. The revival
positions are determined by sðzjÞ ¼ 4=Dj within the
interval 0 ≤ s ≤ 1. This results in sðz1Þ ¼ 1=3, sðz2Þ ¼
2=3, and sðz3Þ ¼ 1, the last one corresponding to z3 → ∞.
Normalization is irrelevant to our analysis. The relative
weights of the radial modes were optimized to concentrate
the intensity in the central spot, resulting in the distribution
shown in the first picture of either the top (experiment) or
bottom (theory) row in Fig. 2 where an intense central spot
is surrounded by weak rings. As the beam propagates, this
structure evolves and the intensity gets transversely redis-
tributed as shown by the experimental results given in the
top row of Fig. 2 and confirmed by the theoretical results
shown in the bottom row of Fig. 2. We have also included
the Supplemental Material [32] with an animation of the
structured spot evolution and the geometric representation
of the Gouy phase variation, showing synchronization at
the revival positions.
As a striking illustration of the revival effect, we used the

SLM to implement a set of structured spots given by
Eq. (19), centered at different locations disposed to form
the initials Universidade Federal Fluminense (UFF). The
initial pattern is displayed at the top row in Fig. 3. Then,

FIG. 1. Experimental setup. FIG. 2. Measured (top) and calculated (bottom) intensity
distribution of the structure given by Eq. (19) at different planes
along propagation.

FIG. 3. Propagation sequence of the structured spot pattern
forming the initials UFF. Three propagation planes are displayed:
z ¼ 0 (top), 53 mm (middle), and 117 mm (bottom). A revival is
evident at 117 mm.
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this pattern gets scrambled at intermediate longitudinal
positions, until it gets restored at the revival position around
117 mm, where the Gouy phases get synchronized at the
fractional phase differences. In order to improve the pattern
visibility, we have applied a uniform step filter that cuts out
the illumination caused by the weak external rings and the
background light. We have also filmed the pattern evolution
along propagation from the initial position until the first
revival. The experimental videos are provided in the
Supplemental Material [32] (raw images and noise filtered
images).
In order to show that this effect can be useful for optical

tweezing in the short distance range, we have also tested the
pattern revival in the millimeter length scale. For this end,
we have used the superposition

ψ shortðrÞ ¼ v0;0ðrÞ þ v12;0ðrÞ; ð20Þ

with a beam waist w0 ¼ 5.7 μm and a Rayleigh distance
z0 ¼ 13.3 mm. Such a high order gap allows the realization
of several revivals at quite short distances, the first one
located at 3.55 mm and the second one at 8.00 mm. For a
more accurate description of the pattern evolution, we
scanned the transverse intensity distribution along a beam
diameter at different propagation planes and displayed the
corresponding 3D plot at the top graph in Fig. 4. Two
revival positions can be clearly seen in the measured
interval. We have also displayed the corresponding

theoretical result at the bottom graph. In both graphs,
the intensity is normalized by the peak value at x ¼ 0,
z ¼ 0. The average discrepancy between theoretical and
experimental results (as measured by the ratio between the
intensity difference and the theoretical value) is 2% over the
entire xz domain covered by the graphs. It becomes more
important where the intensity is small and the experimental
result is more sensitive to the background noise.
In between two consecutive revivals, a dark spot is

produced. This can be useful in tweezing applications
where one desires to study the interaction between trapped
particles and a surface or structure on which light incidence
is to be avoided. In this case, the interacting structure can be
placed at the dark spot close to the trapping bright region.
Finally, we have also measured pattern revival in the long

distance range. For this end, we have employed the super-
position

ψ longðrÞ ¼ v0;0ðrÞ þ v3;0ðrÞ; ð21Þ
with a larger beam waist w0 ¼ 600 μm. This resulted in the
largest structure allowed by the SLMscreen. In contrast with
the previous case, the longer Rayleigh distance z0 ¼ 1.79 m
and the smaller mode gap produced the first revival at a
distance around 3.09 m, therefore 3 orders of magnitude
larger. The experimental result is shown in Fig. 5. As in the
previous cases, we verified that the corresponding theoreti-
cal images agree with the measured ones within 2%
discrepancy in average. Longer distances can be attained
with specially designed masks with larger dimensions than
those of the SLM screen, what can be useful for optical
communication systems.
In conclusion, we have demonstrated a method for

structuring light with pattern revivals using Gouy phase
synchronization at fractional values. The propagation posi-
tions of the revivals are determined by the integer relation
between the Gouy phase and the paraxial mode order, where
commensurability between the different modes plays an
essential role. This can motivate the quest for more involved
connections between number theory and paraxial optics
[33]. The ability to shape the transverse intensity distribution
and address the beam energy to specific points without the
need of intermediate optical components can be useful for
free space communication and optical tweezing. Moreover,
theGouy phase plays also an important role inmatter waves,
where the ideas presented here can find interesting appli-
cations in electron beam microscopy and Bose-Einstein
condensates.

FIG. 4. 3D plot of the intensity distribution along a beam
diameter at different propagation planes for the structured spot
given by Eq. (20). The experimental result is displayed at the top
graph and the theoretical calculation is shown at the bottom. Two
revivals can be clearly seen, the first one located at 3.55 mm and
the second one at 8.00 mm.

FIG. 5. Experimental results for the long range revival of the
structured spot given by Eq. (21). The first revival occurs around
3.09 m from the initial plane.
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