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We present a scheme, based on the delocalized heralded addition of a single photon, to entangle two or
more distinct field modes, each containing arbitrary light states. A high degree of entanglement can in
principle endure light states of macroscopic intensities and is expected to be particularly robust against
losses. We experimentally establish and measure significant entanglement between two identical weak
laser pulses containing up to 60 photons each.
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Entanglement is a distinctive feature of quantum
mechanics marking the most striking deviations of its
predictions from those of classical physics. Although it
has been widely experimentally demonstrated in several
microscopic systems, with recent achievements including
the loophole-free violation of Bell’s inequalities [1,2],
generating and detecting entanglement between larger
and larger objects is an increasingly difficult task, whose
experimental limits are highly worth investigating.
Recent optical experiments have demonstrated the gen-

eration of a so-called “micro-macro” entanglement [3,4],
where one part of a system in a microscopic superposition of
vacuum and one-photon states is entangled with another part
containing a macroscopic mean number of photons. Herewe
propose and test a different scheme, which allows one to
entangle twoormoremodes, each containingarbitrarily large
numbers of photons. Being this “macro-macro” entangle-
ment independent of the size of the entangled partners and
surprisingly robust against losses [5], it is therefore an
exceptional test-bed for studying the resilience and detect-
ability of entanglement for states of growing macroscopicity
and as a potential means of transmission over long distances.
Our basic ingredient is the possibility of performing the

coherent delocalized addition of a single photon over
different modes. Photon addition (by the creation operator
â†) and subtraction (by the annihilation operator â) have
already demonstrated to be extremely useful for performing
operations normally unavailable in the realm of Gaussian
quantum optics [6–8]. Photon subtraction from a single-
mode photonic state can de-Gaussify it [9] and enhance its
nonclassicality [10]. Moreover, it can increase and distill
existing two-mode entanglement [11,12]. On the other
hand, photon addition has the unique capability of creating
(single-mode) nonclassicality [13,14] and (multimode)
entanglement, whatever the input states.
In particular, the coherent addition of a single photon to

two distinct field modes, 1 and 2, entangles them, and the

entanglement produced by a balanced superposition of the
kind â†1 þ eiφâ†2 depends on the states of light already
present in the two modes before the operation. If both are
originally in a vacuum state, one simply obtains a single-
photon mode-entangled state [15] of the kind jψi12 ¼
ðj1i1j0i2 þ eiφj0i1j1i2Þ=

ffiffiffi
2

p
. If different quantum states

originally populate the field modes, the state resulting
from delocalized photon addition may present different
features. For example, injecting a vacuum and a coherent
state in the two input modes gives rise to a so-called hybrid
discrete/continuous-variable entanglement of the two out-
put modes [16].
Here we study the effect of delocalized single-photon

addition on two input modes containing identical coherent
states jαi, as schematically illustrated in Fig. 1. The general
entangled state produced by this operation can be written as
follows:

FIG. 1. Conceptual experimental scheme to perform a coherent
single-photon addition on two different input modes, both
containing a coherent state jαi. A click in a single-photon
detector D1, placed after a balanced beam splitter BS mixing
the herald modes of two photon-addition modules based on
parametric down-conversion (PDC) [8,13], generates entangle-
ment between the two output modes.
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jψφðαÞi12 ¼ ðâ†1jαi1jαi2 þ eiφjαi1â†2jαi2Þ=
ffiffiffiffiffi
N

p

¼ ½D̂1ðαÞD̂2ðαÞðj1i1j0i2 þ eiφj0i1j1i2Þ
þ α�ð1þ eiφÞjαi1jαi2�=

ffiffiffiffiffi
N

p
; ð1Þ

with the normalization factor N ¼ 2½1þ jαj2ð1þ cosφÞ�
and the phase-space displacement operator D̂ðαÞ ¼
eαâ

†−α�â. Already in this simple case of balanced photon
addition, the output state shows a very rich structure
resulting from the coherent contribution of an entangled
and a separable part with adjustable weights depending on
the superposition phase φ and on the amplitude α of the
coherent states. One can quantify the degree of entangle-
ment in a state described by the density matrix ρ̂ by
calculating the so-called negativity of the partial transpose
(NPT) [17], which is proportional to the sum of the negative
eigenvalues λ−i of the partially transposed density matrix
ρ̂PT, and is therefore defined as:

NPTðρ̂Þ ¼ −2
X

i

λ−i ; ð2Þ

where the factor 2 guarantees that 0 ≤ NPTðρ̂Þ ≤ 1. For the
state described by Eq. (1), the NPT is calculated to be

NPTðjψφðαÞihψφðαÞjÞ ¼
1

1þ jαj2ð1þ cosφÞ : ð3Þ

It is easy to see that, in the extreme case of an even
superposition with φ ¼ 0, the degree of entanglement of
the state quickly deteriorates for increasing α, due to the
large contribution of the separable fraction in Eq. (1).
However, the entangled contribution can be continuously
tuned by varying the superposition phase φ, until the other
extreme condition of φ ¼ π is reached. In this case, the odd
superposition entangled state

jψπðαÞi12 ¼
1ffiffiffi
2

p ðâ†1jαi1jαi2 − jαi1â†2jαi2Þ ð4Þ

is seen to be equivalent to the result of an equal phase-space
displacement operation D̂ðαÞ on both modes of a single-
photon mode-entangled state. As such, it is expected to
maintain constant entanglement independently of the
amplitude of the input coherent states (see Fig. 2).
Ideally, a high degree of entanglement (NPT ¼ 1) should
thus be observable in the jψπðαÞi state even between two
modes initially containing large, and possibly macroscopic,
mean photon numbers n̄ ¼ jαj2. More interestingly, this
behavior is preserved even when the states are affected by
an overall limited efficiency η, accounting for channel
transmission losses and detection inefficiency. This is
shown by the dashed curves of Fig. 2, where the maximum
entanglement is given by:

NPTmaxðηÞ ¼
1

η − 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη − 1Þ2 þ η2

p : ð5Þ

The odd superposition entangled states (4) have already
been theoretically discussed in Ref. [5], and the “micro-
macro” entanglement experiments of [3,4] are scaled-down
realizations of such a proposal, where displacement is
performed on just one of the two modes. Moreover, in those
experiments entanglement is finally verified by “un-doing”
the macroscopicity and optically displacing the state back
to the (j0i, j1i) Fock subspace before measurements, as
recently done also in Ref. [18]. Differently from the
approaches of Refs. [3,4], here we generate real “macro-
macro” entanglement, where both modes contain states of
macroscopic size that are also macroscopically distinguish-
able from each other. Furthermore, and differently also
from Ref. [18], here we perform two-mode homodyne
detection of the entire macroscopic states, in principle
allowing us to directly evaluate their entanglement for
arbitrary sizes.
We use the temporal-mode version (see Fig. 3) of the

setup illustrated in Fig. 1 for generating states of the form of
Eq. (4) experimentally. In this case, the two devices for
single-photon addition are replaced by a single one,
operating on two different traveling temporal modes.
The coherent superposition of photon additions on mode
1 or 2 is obtained by allowing the herald photon from the
addition device (based on stimulated PDC [8]) to travel two
indistinguishable paths of different length towards the
herald detector [15]. In principle, besides its higher phase
stability, the temporal-mode version of the experiment has
the fundamental additional advantage of an easy scalability,
because it allows one to increase the number of involved
modes without a corresponding multiplication of photon
addition devices and detectors.
We inject several coherent state amplitudes α at the input,

and perform a quantum tomographic analysis of the final

Odd state

Even state

FIG. 2. Theoretical entanglement (quantified via the negativity
of the partial transpose, NPT) of the odd and even entangled
states (yellow and blue solid curves, respectively), according to
Eq. (3). Dashed curves present the numerically calculated NPT
behavior when both the modes are subjected to 40% of losses.
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output states based on two-mode time-domain homodyne
detection [19]. Here, differently from [15,16], the phases of
the two local oscillator pulses are independently changed in
the ½0; π� interval by controlling their global phase via a
piezo-mounted mirror (PZT), and their relative phase by
means of a fast electro-optic modulator. An ultraprecise
timing system, based on a digital synthesizer, is used both
to generate the modulator driving signal, which is locked to
the laser pulses, and to synchronize the acquisition system.
The reconstructed two-mode density matrices are then used
to calculate their NPT and extract the degree of entangle-
ment of the states as a function of their macroscopicity.
At this point, it is worth noting that a faithful repre-

sentation of states like those of Eq. (4) requires the
reconstruction of a number of density matrix elements that
grows extremely fast with the coherent state amplitude jαj.
For example, already for jαj ≈ 7, corresponding to a mean
photon number of n̄ ¼ jαj2 ≈ 50 photons per mode, at least
3 × 107 density matrix elements need to be calculated.
Since the brute force approach of full density matrix
reconstruction has no hope to succeed with such a huge
number of elements, we adopt two different strategies to
restrict the reconstructed subspace.

In the first method, the global LO phase for homodyne
detection is actively randomized while the relative phase
between the two temporal LO modes is scanned in a
controlled way over 9 different values. About 50 000
quadrature measurements per mode are performed for each
value of the relative LO phase, and only the density matrix
elements diagonal with respect to the LO global phase are
then reconstructed by means of an iterative maximum
likelihood algorithm [20,21]. The upper panel of Fig. 4
shows that measured NPT values for such a phase-averaged
tomography agree very well with theoretical expectations.
It is interesting to note that, while global phase averaging
lowers the NPT of the state, entanglement is still well
preserved also for large mean photon numbers. Although

FIG. 3. Experimental setup for coherent single-photon addition
on two different input temporal modes, both containing a
coherent state jαi. It is based on a mode-locked laser emitting
1.5-ps pulses at 786 nm with a repetition rate of 81 MHz,
providing: the local oscillator (LO) for homodyne detection, the
pump for a parametric down-conversion (PDC) process after a
frequency-doubling stage (SHG), and the seed coherent states for
photon addition in the PDC crystal. PDC photons emitted in the
idler channel pass through a set of spectral and spatial filters
(F) before entering an unbalanced, fiber-based, Mach-Zehnder
interferometer. A detection event by the single-photon detector
(D1) placed at one of the interferometer outputs heralds the
successful implementation of a delocalized single-photon addi-
tion, meaning that entanglement has been conditionally generated
between the two temporal modes. The state superposition phase φ
is remotely controlled by varying the relative phase between the
interferometer arms via a fine adjustment of an air-gap length. A
feedback loop based on the interference of a counterpropagating
pulse train injected in the unused interferometer output port
provides phase stabilization.

FIG. 4. Experimental (green dots) and calculated NPT for the
odd entangled states (yellow solid curves) as a function of the
mean photon number n̄ (the calculated NPT curves for even
entangled states are also shown in blue for reference). Upper
panel: “global-phase-averaged tomography.” The theoretical
curves are calculated with a detection efficiency η ¼ 68%.
Bottom panel: Tomography based on correlated quadrature
fluctuations shows significant entanglement between modes with
up to about 60 photons each. The theoretical curves are calculated
by considering a detection efficiency η ¼ 64% together with a
noise of π=100 on both the state phase φ and the LO global phase.
In addition, the observed value of entanglement is mainly limited
by the state preparation efficiency, degrading with increasing
mean photon number due to a nonperfect Mach-Zehnder vis-
ibility of 99.6%. Statistical errors are evaluated with a bootstrap
method using 100 resampled quadrature data sets. For each data
set we reconstructed the density matrix and calculated the NPT.
Error bars in the plot are estimated as the standard deviation of
these NPT values and are smaller than the corresponding dot
symbols.
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the number of density matrix elements to reconstruct is
considerably reduced with respect to the full tomography
case, the largest state that we can analyze with this method
has a mean photon number per mode n̄ ≈ 6, mainly due to
finite computational resources (an optimized parallel code
running on a 8-CPU 3.4-GHz Xeon processor requires
more than 70 hours to reconstruct a n̄ ¼ 6 odd state).
These limitations can be overcome by using a different

approach. Since the entanglement features of the odd state
(4) derive from those of a displaced delocalized single
photon and are therefore entirely contained in the correlated
fluctuations of the quadrature measurements of the two
modes, one can just use such fluctuations around their
common mean values for tomographic reconstruction of the
two-mode density matrix in the reduced Fock subspace of
zero, one and two photons. Again, about 50 000 quadrature
values are acquired for nine different relative LO phases
with the global LO phase locked, and the means of the
measured quadrature distributions are subtracted before
reconstruction. Not requiring additional optical back dis-
placements as in Refs. [3,4,18], this scheme is free from
unwanted phase and amplitude noise [5] and allows one to
keep the dimensions of the reconstructed Fock space fixed
regardless of the state macroscopicity, thus allowing the
measurement of entanglement for very large states.
Results are shown in the bottom panel of Fig. 4.

Compared to the ideal constant behavior of the theoretical
NPT for the odd state shown in Fig. 2, the experimental
NPT shows an unexpected decay for growing n̄, but the
analyzed states nonetheless preserve a relatively large
degree of entanglement even for macroscopic mean photon
numbers (up to n̄ ≈ 60) in each mode. The observed
degradation of the experimental NPT can be fully
accounted for by including the effects of phase instabilities
and limited detection and preparation efficiency. The latter
has the most important effect, and we observed it decay for
the state of Eq. (4) while increasing the input mean photon
number. The reason is a nonperfect visibility of the Mach-
Zehnder herald interferometer, that makes us unable to
totally erase the separable component of the state of Eq. (1)
when we set φ ¼ π. This effect can be modeled by a mixing
of the desired odd entangled state with a separable pair of
coherent states of the same amplitude.
This approach has another interesting advantage com-

pared to those of Refs. [3,4,18]. In our scheme, the two-
mode entangled state is fully detected by the homodyne
detector in its complete macroscopic form, and one can thus
use the full quadrature measurements (comprising both the
quadrature mean values and their fluctuations) in the two
modes for extracting other important parameters of the
state, e.g., some entanglement witness.
In conclusion, we have presented a new versatile

method, based on the delocalized addition of a single
photon, to entangle states of arbitrarily large size. The
remarkable simplicity of our scheme will probably make it

an invaluable tool for investigating the transition of
quantum phenomena between the microscopic and macro-
scopic regimes. By analyzing the particular case of an odd
superposition of photon addition operations onto identical
coherent states, we have experimentally measured signifi-
cant entanglement between two modes, each populated
with a mean photon number up to about 60. In our
realization, entanglement arises from the coherent addition
of a single photon over different modes. Therefore, it
amounts at most to a single ebit on top of a separable state
made of two relatively large coherent states. The larger the
amplitude of the input coherent states, the harder it
becomes to observe the quantum correlations due to the
single shared photon (as we directly see from the decaying
curve of the experimental NPTas a function of the coherent
state size in the bottom panel of Fig. 4). However, in the
case of φ ¼ π, each mode of the entangled state contains
two well-distinct components, a classical Gaussian coher-
ent state and a nonclassical and non-Gaussian displaced
single photon. These two components, although sharing
a similar mean photon number (respectively, jαj2 or
jαj2 þ 1), differ significantly (and in a way that is easily
distinguishable with a simple photodiode without photon-
level energy resolution) in the variance of their intensity
distributions (respectively proportional to jαj2 or 3jαj2).
According to some criteria [3–5,22], this is a distinctive
feature of a macroscopic quantum state. Other approaches
argue that different indicators (for example, the frequency
of the interference fringes in the phase-space representation
of the states) should be used instead to define a quantum
superposition as macroscopic [23]. Since a definition of
macroscopic quantumness and entanglement is a subtle and
still quite debated issue [24,25], here we only consider
macroscopicity with regard to the size of the states in the
two modes. This “macro-macro” entanglement has been
shown to be particularly robust against losses and is thus
expected to be well suited for quantum communication
tasks and storage in atomic quantum memories.
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