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Atomic self-ordering to a crystalline phase in optical resonators is a consequence of the intriguing
nonlinear dynamics of strongly coupled atom motion and photons. Generally the resulting phase diagrams
and atomic states can be largely understood on a mean-field level. However, close to the phase transition
point, quantum fluctuations and atom-field entanglement play a key role and initiate the symmetry
breaking. Here we propose a modified ring cavity geometry, in which the asymmetry imposed by a tilted
pump beam reveals clear signatures of quantum dynamics even in a larger regime around the phase
transition point. Quantum fluctuations become visible both in the dynamic and steady-state properties.
Most strikingly we can identify a regime where a mean-field approximation predicts a runaway instability,
while in the full quantum model the quantum fluctuations of the light field modes stabilize uniform atomic
motion. The proposed geometry thus allows to unveil the “quantumness” of atomic self-ordering via
experimentally directly accessible quantities.
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Introduction.—Coupling of an individual two-level
quantum emitter to a single electromagnetic field mode
displays fundamental principles of light and matter inter-
action. Reaching the strong coupling regime where the
energy exchange between the atom and the field dominates
environmental coupling and loss opened the research
direction commonly known as cavity quantum electrody-
namics [1–4]. Strong coupling between single atoms and
the resonator modes induces nonlinear field dynamics even
on the single photon level and provides a seminal tool to
study and reveal intriguing quantum effects such as super-
positions, entanglement, and measurement backaction in
light-matter interaction [5–11].
Extending this to whole ensembles of cold atoms

interacting with optical resonator modes opens the domain
of collective effects and light-induced long-range inter-
actions. When one includes atomic motion the light-
induced forces on laser illuminated particles in an optical
resonator lead to self-ordering of the particles [12]. The
underlying phase transition from a homogeneous density to
an atom crystal bound by light has been first experimentally
seen with thermal atoms [13] and more recently with Bose-
Einstein condensates [14,15]. As the specific emerging
order depends on the pump and cavity geometry [16–19],
this opened promising possibilities for analog simulation of
quantum phase transitions [14], spontaneous symmetry
breaking, and artificial quantum matter [20–22]. Recent
theoretical [23–27] as well as experimental [28–31]
advances push these possibilities towards spinor quantum
matter based on multicomponent quantum gases. A recent
theoretical work [32] even predicts that the self-ordered
state of a BEC in a ring cavity renders a promising platform
for future high precision metrology.

In this Letter we focus on the microscopic physics and
dynamics of the self-ordering phase transition, which is
closely tied to spontaneous symmetry breaking. The
following addresses the fundamental question: How quan-
tum are the mechanisms behind the symmetry breaking at
the onset of self-organization? Since experimental limita-
tions and technical fluctuations currently are at least on the
same order of magnitude as quantum fluctuations, it is hard
to find a clear answer to this question in present exper-
imental setups. Therefore, we propose a variation of a self-
ordering setup based on a ring cavity with a transversal
pump [25,26,33–38] impinging at a nonzero angle as
shown in Fig. 1. The fundamental modes of a ring cavity
are counterpropagating running waves. Hence, the system
exhibits a continuous translation symmetry, which is a
crucial property for the results presented below. We state
that the proposed setup allows the observation of quantum
noise driven dynamics via directly accessible quantities
such as the mode intensities or the atomic momentum
distribution. Our predictions are based on the comparison
of a full quantum model with the mean-field dynamics.
While basic properties of self-ordering of atoms in an
optical resonator can be understood on a mean-field level
[39], higher order density correlations or atom-field entan-
glement obviously cannot be properly accounted for in this
model. However, these effects play a key role around
threshold. Note that the fast generation of atom-field
entanglement was proposed as one central mechanism
driving the self-ordering phase transition in a Fabry-
Pérot cavity [40,41]. We show that if the pump beam
impinges onto the atoms at an angle φ (see Fig. 1), the
mirror symmetry between the two counterpropagating
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cavity modes is broken, but the system still is translation
invariant. This results in significant differences in the
dynamics as well as the steady state properties between
the mean-field and the full quantum model (see Figs. 2
and 3). These differences can serve as a measure of the
“quantumness” of a given setup via easily accessible
quantities.

Quantum versus mean-field modeling.—Let us consider
a two-level atom moving along the axis of a ring resonator
driven by an off-resonant plane wave laser of frequency ωl
and Rabi frequency Ω (see Fig. 1). While the particle can
freely move along the cavity axis (x direction), it is strongly
confined in the transverse directions. The laser, detuned by
Δa ≔ ωl − ωa from the atomic transition frequency ωa,
impinges at an angle φ ∈ ½−π; π�. The atomic dipole
couples with amplitude g0 to two counterpropagating
degenerate cavity modes â� of the ring resonator with
frequency ωc.
In the far detuned case jΔaj ≫ Ω; g0 the atomic excited

state can be adiabatically eliminated [39] and the effective
Hamiltonian in a frame rotating at the laser frequency ωl is
the sum of the atomic and the cavity Hamiltonian,
Ĥ ¼ Ĥat þ Ĥcav, with

Ĥat ¼
p̂2

2m
þℏU0ðâ†þâþþ â†−â−þ â†þâ−e−2ikx̂þ â†−âþe2ikx̂Þ

þℏηðâþeikx̂ð1−sinφÞ þ â−e−ikx̂ð1þsinφÞ þH:c:Þ; ð1aÞ

and

Ĥcav ¼ −ℏΔcðâ†þâþ þ â†−â−Þ: ð1bÞ

Here we introduced the atomic momentum operator
p̂ ¼ −iℏ∂x, the cavity potential depth per photon ℏU0 ≔
ℏg20=Δa, the effective pump amplitude ℏη ≔ ℏΩg0=Δa

from scattering of pump photons into the cavity modes
with wave number k ¼ cωc ¼ 2π=λ, where λ is the
cavity resonance wavelength, and the cavity detuning
Δc ≔ ωl − ωc.
For a perpendicular pump direction, i.e., φ ¼ 0, the

Hamiltonian Eq. (1) reduces to the model studied in, e.g.,
Refs. [22,34], which above a certain critical pump strength
exhibits a phase transition to a supersolid state by breaking
a continuous translation symmetry. Pumping at an angle φ
in Eqs. (1) preserves the continuous symmetry; i.e., Ĥ is
invariant under spatial translations x̂ ↦ T Δx̂x̂ ¼ x̂þ Δx̂
since those are compensated by phase shifts â� ↦
UΔxâ� ¼ â�e∓ikΔx̂ of the cavity modes.
Using standard quantum optics modeling the dynamics

of the composite atom-cavity system is governed by the
master equation [42]

_ρ ¼ −
i
ℏ
½Ĥ; ρ� þ κ

X

j¼�
ð2âjρâ†j − â†j âjρ − ρâ†j âjÞ; ð2Þ

where photon loss out of the cavity at rate 2κ is included but
atomic spontaneous emission is neglected [43].
As mentioned above, important aspects of self-ordering

can already be analyzed on a mean-field level [39], where
the photon field operators in Eqs. (1) are replaced by their
expectation values â� → hâ�i≕ αmf

� ¼ jαmf
� j expðiϕmf

� Þ,

FIG. 1. Sketch of the system. The internal jgi ↔ jei transition
of a quantum emitter moving in a ring cavity is driven at a certain
angle φ by an off-resonant plane wave laser field with pump
strength η and couples to two degenerate counterpropagating
cavity modes â�.

FIG. 2. (a) Time evolution of the momentum expectation
value hp̂i (left axis) for the quantum case (solid blue line) and
the mean-field model (dashed red line). The insets show the final
momentum distributions for the two cases. The dash-dotted grey
line (right axis) shows the time dependence of the logarithmic
negativity as a measure for atom-field entanglement. (b) Photon-
number distribution at ωrect ¼ 4 for the quantum case. Para-
meters: ðη; U0;Δc; κÞ ¼ ð12;−1;−10; 10Þωrec.
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resulting in an effective atomic Hamiltonian Ĥmf ≔
Ĥatjâ�↦αmf

�
¼ p̂2=ð2mÞ þ VmfðxÞ with the classical optical

potential

Vmfðx̂Þ ¼ 2ℏU0jαmfþ jjαmf
− j cosð2kx̂þ ΔϕmfÞ

þ 2ℏη½jαmfþ j cosðkx̂½1 − sinðφÞ� þ ϕmfþ Þ
þ jαmf

− j cosðkx̂½1þ sinðφÞ� − ϕmf
− Þ�: ð3Þ

Here Δϕmf ≔ ϕmfþ − ϕmf
− denotes the relative phase

between the two counterpropagating modes. Note that
the pump-induced potential (∝η) has a different periodicity
compared to the bare cavity potential (∝U0) due to the
nonzero angle φ. Owing to the continuous symmetry of Ĥ
the phases ϕmf

� in the ordered phase can take arbitrary
values and the dynamics is then described by the three
coupled mean-field equations for the atomic wave function
ψðx̂; tÞ and the mean field amplitudes αmf

� ðtÞ,

iℏ∂tψ ¼ Ĥmfψ ð4aÞ

i∂tα
mf
� ¼ ð−Δc þ U0 − iκÞαmf

� þ U0B�
�α

mf∓ þ ηΘ�
�: ð4bÞ

Here we introduced the bunching parameter B� ≔
he�2ikx̂iψ and the order parameters Θ� ≔ he�ikx̂ð1∓sinðφÞÞiψ .
To unravel the role of quantum effects in this system,

we calculate the dynamics of the master equation, Eq. (2),
and compare it to the mean-field dynamics obtained
from Eqs. (4). We numerically solve Eqs. (2) and (4)
using the QuantumOptics.jl framework [44]. For φ ¼ 0 the
Hamiltonian Eq. (1) is λ periodic with unit cell x ∈ ½0; λ�.
For angles φ ≠ 0 the periodicity of the Hamiltonian
depends on φ. While certain choices of φ may generate
infinitely large unit cells, restricting the angle to values
where sinðφÞ is a rational number n=m with ðn;mÞ ∈ Z
results in unit cells whose length is given by the
least common multiple (LCM) of n and m. Therefore,
without loss of generality we restrict our discussion
to φ ¼ π=6, i.e., sinðφÞ ¼ 1=2, resulting in a unit cell
x ∈ ½0; 2λ�.
Dynamics.—The dynamics close to the phase transition

point allows us to extract experimental signatures about the
quantumness of the system. Allowing the transverse pump
field to impinge at an angle φ generates significant
differences between the two models Eqs. (2) and (4) for
a large parameter range and reveals the quantum nature of
the self-ordering phase transition close to the critical
point. In Fig. 2(a) we compare the momentum expectation
values obtained from the respective dynamics of Eqs. (2)
(solid blue curve) and Eq. (4) (dashed red curve) for
sinðφÞ ¼ 1=2. In either case, the tilted pump beam causes
a nonzero momentum. However, while in the quantum
case the atom attains a momentum constant in time, the
mean-field treatment reveals a constant acceleration,

i.e., an increasing momentum. These differences are also
expressed in the respective momentum distributions
[Fig. 2(a)]: In the quantum case a broad distribution around
the mean momentum is found, whereas in the mean-field
case many momentum components amount to zero and the
momentum distribution is dominated by a small number of
positive momenta.
The dynamic instability obtained in the mean-field case

is well known as the CARL (collective atomic recoil lasing)
instability, which has been rigorously studied theoretically
and experimentally [45–48]. Its origin is the classical nature
of cavity fields in the mean-field treatment: There is no
photon number distribution and therefore one mode always
contains more photons than the other.
By contrast, the quantum nature of the cavity fields

suppresses the CARL runaway effect in the quantum case:
The quantum statistics of the two modes [see Fig. 2(b)]
exhibits that despite the mode aþ containing more photons
on average, there is still a finite propability that no photon is
scattered in the mode âþ but a photon is scattered in the
mode â−. Hence, the photon statistics is more balanced
than in the mean-field case. This is also reflected in the
broad atomic momentum distribution [Fig. 2(a)] which
even contains a significant amount of negative momentum
components. In addition, note that the monotonically
decreasing photon number distribution of the mode â−
shows that the state is a so-called passive state [49,50]
whose energy cannot be reduced by cyclic unitary trans-
formations. Passive states other than the vacuum state only
exist if that state has a finite entropy. Here part of this
entropy is generated by partially tracing over a correlated
atom-field state. The distribution for the mode âþ is
nonmonotonic and therefore the state is nonpassive. By
contrast, in the mean-field treatment the field states are
implicitly assumed to be nonpassive.
The role of atom-field entanglement for the dynamics of

the quantum case can be analyzed by calculating the
logarithmic negativity [51]. For the bipartite system con-
sisting of the subsystems A (atoms) and B (modes â�) it is
defined as ENðρÞ ¼ log2ðkρTAkÞ, where ρTA denotes the
partial transpose with respect to the subsystem A and kρk ≔
Trð

ffiffiffiffiffiffiffi
ρ†ρ

p
Þ is the trace norm. The entanglement increases to

very high values as long as the momentum expectation
value increases [grey dashed-dotted line in Fig. 2(a)] and it
saturates as soon as the steady state is reached. Hence,
atom-field entanglement plays a major role during the
buildup phase of the moving lattice.
In summary, the dynamics of an atom in a ring cavity

with nonperpendicular transversal pump allows us to
directly observe the effect of quantum statistics. If the
mean-field treatment describes the system well one would
observe a runaway CARL instability. However, as soon as
the quantum nature of the constituents starts to play a role
one would observe an atom moving with a constant center
of mass velocity.
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Steady-state properties.—Besides the difference in the
dynamics, the effect of quantum nature also appears in the
steady state of the master equation, Eq. (2). As a result of
the continuous symmetry of the Hamiltonian Ĥ the full
quantum steady state density matrix ρss of Eq. (2) exhibits
the same symmetry. It thus contains all states which can be
transformed into each other via spatial translations T Δx and
corresponding phase shifts UΔx. Therefore, in the steady
state the average order parameters Θ� and field amplitudes
α� vanish [32,37] as the dynamics contains no process that
spontaneously breaks the system’s continuous symmetry.
However, selecting a particular field phase unveils

the constituents of the corresponding atom-field state. To
this end we introduce an effective potential Vquant ≔
Vmf jðαmf

� ;ϕmf
� Þ↦ðαq�;ϕq

�Þ with the absolute values jαq�j of the
cavity field amplitudes obtained from the maxima of the
Wigner functions W� [42] of the field modes states ρ� ≔
Tr at;â∓ðρssÞ (see also Ref. [37]). By choosing specific
phases ϕq

� the symmetry is broken explicitly. Note that
the potential Vquant obeys the same periodicity as the initial
Hamiltonian Eq. (1). The ground state of the newly found

Hamiltonian ˆ̃H ¼ p̂2=2mþ Vquantðx̂Þ is a symmetry bro-
ken state with nonvanishing order parameters. The com-
parison of the resultant states for sinðφÞ ¼ 0 and
sinðφÞ ¼ 1=2 unravels the role of quantum effects in the
self-ordering process close to the transition point.
Figure 3 shows the comparison of the cavity field

amplitudes and order parameters Θ� for sinðφÞ ¼ 0
[Fig. 3(a)] and sinðφÞ ¼ 1=2 [Fig. 3(b)] as a function of

the pump strength η. The two cases exhibit significantly
different behavior. In the sinðφÞ ¼ 0 case all order para-
meters and modes exhibit a clear threshold behavior at the
same critical pump strength. For the case where the trans-
versal pump beam impinges nonperpendicular to
the cavity axis [Fig. 3(b)], however, the field jαqþj and the
corresponding order parameters Θ� have a different thresh-
old than the field jαq−j. Hence, there is a region where the âþ
mode has a field jαqþj ≠ 0 whereas the â− mode still has no
field, jαq−j ¼ 0. To understand the strong discrepancy
between the two cases we analyze the properties of the
quantum state obtained from Eq. (2) in more detail. Figure 4
shows the Wigner functions W� [42] of the modes â� for
pump strength η ¼ 12ωrec and sinðφÞ ¼ 1=2, which corre-
sponds to the aforementioned region where the mode â− has
no field in contrast to the mode âþ. WhileWþ has the form
of an annulus [Fig. 4(c)], W− exhibits a single peak at the
origin [Fig. 4(d)]. Note that the rotational symmetry of the
Wigner functions is a direct result of the continuous trans-
lational symmetry of the system (see also Ref. [32]).
As mentioned above, we use the location of the maxima

ofW� to determine the magnitude of the field amplitude of
the respective mode. Hence, we only attribute a nonzero
field to the mode â�, if the radial cut of W� exhibits two
equal maxima, which requires W� to have the form of an
annulus [see Figs. 4(a) and 4(b)]. While this fixes jαq�j, the
phase ϕq

� still remains unspecified and may be chosen
arbitrarily. This property is also found in traditional laser
setups [52,53]. As shown in Fig. 4, the reduced photon
states are phase-averaged coherent states (Poissonian
states) whose radial distribution of the Wigner repre-
sentation is the sum of two Gaussian distributions. The
Wigner function of the phase-averaged coherent state
ρλ ¼ expð−λ2ÞPnðλ2n=n!Þjnihnj (λ > 0) exhibits multiple

FIG. 4. Wigner functions W� of the field modes âþ and â− for
sinðφÞ ¼ 1=2 and η ¼ 12ωrec for parameters as in Fig. 3. (a) and
(b): radial distribution obtained by cutting W� [see (c) and (d)]
along Imðα�Þ ¼ 0. The dashed green and dash-dotted red curves
are Gaussian fits of the radial distribution of the respective
Wigner functions (see text).

FIG. 3. Modulus of steady state field amplitudes and atomic
order parameters as a function of the pump strength η for the full
master equation quantum model Eq. (2) for (a) sinðφÞ ¼ 0 and
(b) sinðφÞ ¼ 1=2. The solid lines are a guide to the eye, the
symbols mark points obtained from numerical simulations. For
orthogonal pump sinðφÞ ¼ 0 the phase transition is qualitatively
similar to the mean-field model discussed in Ref. [22], note that
jαqþj ¼ jαq−j and jΘþj ¼ jΘ−j. For tilted pump sinðφÞ ¼ 1=2,
however, the steady state exhibits a significantly different
behavior induced via photon correlations as explained in the
main text. Parameters: ðU0;Δc; κÞ ¼ ð−1;−10; 10Þωrec.
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maxima (uniformly distributed on a ring) if and only if
λ > 1=2, which is the quantum noise limit.
For the chosen pump strength η ¼ 12ωrec only the mode

âþ exhibits a nonzero field amplitude jαqþj > 0, whereas for
the â− mode jαq−j ¼ 0. This is in stark contrast to the
“classical” mean-field treatment which ignores the quan-
tum noise and explicitly breaks the symmetry by attributing
a nonzero mean field jαmf

− j > 0 [the position of the
maximum of the green dashed and red dash-dotted curve
in Fig. 4(b)]. By contrast, in the quantum treatment
quantum effects and correlations prevent the emergence
of a symmetry-breaking field in that mode. This implies
that for sinðφÞ ¼ 0 the quantum nature of the fields only
plays a role in a very narrow region around threshold.
Including an angle sinðφÞ ≠ 0, however, results in a wider
region where the system’s quantum nature is revealed.
Conclusions.—The comparison of a full quantum

description with a mean-field model for the self-ordering
of atoms in a ring resonator with a tilted transverse pump
beam reveals the strong role of quantum fluctuations in the
corresponding phase transition. Breaking mirror symmetry
by introducing an angle for the pump light creates quali-
tative differences in both, the dynamics as well as the
steady-state properties. This is in stark contrast to the
alternative detection of quantum effects by measuring
photon statistics or performing atomic correlation mea-
surements, which solely results in quantitative measures for
the system’s quantumness [54,55]. In the proposed system
striking dynamical differences arise from the quantum
fluctuations and quantum correlations (entanglement) of
cavity fields and atoms neglected in the mean-field treat-
ment. Hence, the system provides a clear tool to measure
the quantumness of a given setup via easily accessible
quantities. This is of particular experimental relevance
since the study of quantum effects in the self-ordering
phase transition is in general difficult as they are often
hidden due to technical noise. Our setup is realizable with
only minor modifications to current experiments [56–60]
and should also be relevant in quantum thermodynamics,
where the fundamental difference between passive and
nonpassive states plays a key role [61–64].
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