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The nature of an instability that controls the transition from static to dynamical friction is studied in the
context of an array of frictional disks that are pressed from above on a substrate. In this case the forces are
all explicit and Newtonian dynamics can be employed without any phenomenological assumptions. We
show that an oscillatory instability that had been discovered recently is responsible for the transition,
allowing individual disks to spontaneously reach the Coulomb limit and slide with dynamic friction. The
transparency of the model allows a full understanding of the phenomenon, including the speeds of the
waves that travel from the trailing to the leading edge and vice versa.
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Introduction.—The transition from static to dynamical
friction is an old problem that intrigued the ancient Greeks
[1]. Explicitly, Themistius stated in 350 A.D. that “it is
easier to further the motion of a moving body than to move
a body at rest.” The phenomenon is central to many
different fields of physics and material science including
tribology, performance of microelectromechanical systems,
mechanics of fracture, and earthquakes. Despite the con-
siderable amount of work in the modern era starting with
Leonardo, Amonton, and Coulomb [2], and culminating
with enlightening experiments and simulations in recent
years [3–9], the actual instability mechanism that results in
this transition is still debated [8,10]. The aim of this Letter
is to offer a very simple model for which the prevailing
instability mechanism can be understood in full detail.
This is done with the conviction that simple models that can
be fully understood play an important role in statistical and
nonlinear physics where they can often shed light on
complex phenomena that may exhibit universal character-
istics. Examples are the Ising model for magnetic phase
transitions [11] or one-dimensional maps for the onset of
chaos [12]. We thus do not attempt to model a specific
physical realization, but consider a model that displays the
desired transition whose triggering instability and its
consequences are manifest and fully understood.
The model is shown in Fig. 1. It consists of N two-

dimensional disks of radius R, with their initial center of
mass positioned at xi ¼ ð2i − 1ÞR, yi ¼ R, i ¼ 1;…; N,
aligned over an infinite substrate at y ¼ 0. Each disk is
pressed with an identical force Fy normal to the substrate,
providing a very simple model of asperities contacts in more
realistic systems. Note that the substrate is totally flat, in
contrast to many attempts to explain the desired transition
with periodic substrate; see, for example, Ref. [13]. The
boundary conditions are periodic such that the disk i ¼ N is
in contact with the disk i ¼ 1. The forces and torques are

annulled by force minimization protocol (see Supplemental
Material [14]) to reach mechanical equilibrium. After attain-
ing equilibrium we increase quasistatically a force Fx which
is applied at the center of mass of the disk i ¼ 1. At some
critical value of Fx (see below for details) the system
becomes unstable with respect to an oscillatory instability
[15,16]. This instability can trigger a transition from static
to dynamical friction, which is the subject of this Letter. The
instability will be shown to result from the fully Newtonian
dynamics of the model, employing standard forces as
discussed next, requiring no phenomenological input beyond
the definition of the forces. The transition can be seen in a
movie provided in the Supplemental Material [14].
Forces.—The interaction forces between the disks and

between the disks and the substrate are standard [17]. The
normal force is determined by the overlap δij ≡ 2R − rij
between the disks and the compression δiw ≡ R − yi
between the disk and the substrate wall, rij ≡ ri − rj. We
choose a Hertzian force between the disks,

FðnÞ
ij ¼ knδ

3=2
ij r̂ij; r̂ij ≡ rij=rij; ð1Þ

FIG. 1. The model consists of N identical disks (here and in the
simulations below, N ¼ 10) which interact via Hertz and Mindlin
forces between themselves and the substrate below. A constant
force Fy is applied to press them against the substrate, and an
external force Fx is applied to the first disk, increasing it
quasistatically until a pair of complex eigenvalues gets born,
signaling an oscillatory instability. From that point on, the
Newtonian dynamics takes the system from static to dynamical
friction.
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and similarly for the normal force between a disk and the
substrate. Note that this force is a model force, and although
its use is time honored, it should be considered as an
effective force since we do not specify the precise defor-
mation of the contact area between the disks and between
the disks and the substrate. The tangential force is a
function of the tangential displacement tij between the
disks and tiw between the disks and the substrate. Upon first
contact between the disks and the substrate, tij ¼ tiw ¼ 0.
Providing every particle with the angular coordinate θi, the
change in tangential displacement is given by

dtij ¼ drij − ðdrij · rijÞr̂ij þ r̂ij × ðRdθi þ RdθjÞ;
dtiw ¼ ðdxi þ RdθiÞx̂; ð2Þ
where x̂ is the unit vector parallel to the substrate. For the
tangential force we choose the Mindlin model [18], which
between the disks reads

FðtÞ
ij ¼ −ktδ

1=2
ij tijt̂ij; ð3Þ

with a similar definition for the tangential force between the
disk and the substrate. The tangential forces satisfy the
Coulomb condition,

FðtÞ
ij ≤ μFðnÞ

ij ; ð4Þ

where μ ¼ 10 is the friction coefficient. For technical
purpose we smooth out the Coulomb law such that the
tangential force will have smooth derivatives; we choose

FðtÞ
ij ¼ −ktδ

1=2
ij

�
1þ tij

t�ij
−
�
tij
t�ij

�
2
�
tijt̂ij; t�ij ≡ μ

kn
kt

δij:

ð5Þ
Now the derivative of the force with respect to tij vanishes
smoothly at tij ¼ t�ij and Eq. (4) is fulfilled.
Dynamics and transition.—The dynamics is Newtonian;

we denote the set of coordinates qi ¼ fri; θig as

m
d2ri
dt2

¼ Fiðqi−1; qi; qiþ1Þ; qNþ1 ¼ q1; ð6Þ

I
d2θi
dt2

¼ Tiðqi−1; qi; qiþ1Þ; ð7Þ

wherem and I are the mass and moment of inertia of the ith
disk, Fi is the total force on disk i, and Ti is the torque on
that disk. Below, time is measured in units of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Rkn

p
and length in units of 2R. Although the simulations were
performed for a wide range of parameters, we present
results for kn ¼ 2000, kt ¼ 2kn=7, Fy ¼ 0.1. The condi-
tions for mechanical equilibrium are Fi ¼ Ti ¼ 0, and
the stability of an equilibrium state is determined by the
Jacobian matrix

Jαβij ≡−∂F̃α
i

∂qβj
; F̃i ≡

X
j

F̃ij; ð8Þ

where qj stands for either a spatial position or a tangential
coordinate and F̃i stands for either a force or a torque. The
explicit calculation of the Jacobian matrix for the present
model is presented in the Supplemental Material [14]. For
our purpose here it is enough to note that the Jacobian matrix
is real but not symmetric, and therefore it can have pairs of
complex eigenvalues which necessarily lead to an oscillatory
instability [15,16]. Even if initially all the eigenvalues are
real and the system is stable, by increasing the external force
Fx we always reach a threshold value of this force where a
pair of complex eigenvalues is born. Details of this protocol
and code [19] are in the Supplemental Material [14]. We
should add that changing the material parameters like the
force constants or the friction coefficient changes the value
of Fx where instability sets in but does not change the nature
of the results presented below.
Instability and dynamics.—The birth of the instability is

demonstrated in Fig 2. Note that this figure exhibits
two events of birth of a complex conjugate pair of
eigenvalues. The first complex pair dies out with increas-
ing Fx without triggering a transition to dynamical
friction. The difference in dynamical response is pre-
sented in Fig. 3, which shows the mean-square displace-
ment MðtÞ ¼ ð1=10Þ P10

i¼1 jriðtÞ − rið0Þj2. The protocol
resulting in these dynamics is spelled out in detail in the
Supplemental Material [14]. For the two external forces
Fx ¼ 0.03 and 0.04, the oscillatory instability exists, but
the mean-square displacement becomes stationary at a
minute fraction of the disk radius (about 10−5), indicating
static friction with charging of tiw but without transition to
dynamical friction. For Fx ¼ 0.062, all the eigenvalues of
J are real, there is no instability, andMðtÞ never increases.
For Fx ¼ 0.083, the system is in the second regime of

FIG. 2. Two examples of a bifurcation of a pair of imaginary
parts of eigenvalues upon increasing the external force Fx. A pair
of real eigenvalues coalesces when the pair of imaginary
eigenvalues bifurcates. The first bifurcation results in an oscil-
latory instability, but the force Fx is not sufficient to trigger a
transition to dynamical friction. The second does.
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oscillatory instability, which is now developing strongly,
bringing MðtÞ to about 10−2R, where for the first time the
Coulomb law is breached at the contact with the substrate,
and subsequently MðtÞ increases linearly in time with a
fixed average velocity.
The mechanism of the transition is understood by

watching the typical trajectories of the centers of mass
of the disks following the instability. An example pertain-
ing to the fourth disk is shown in Fig. 4, and is represen-
tative for all the other disks. A spiral of growing amplitude
in the x-y plane leads in time to an increase in yi to the point
that breaching the Coulomb law at the contact with the
substrate becomes inevitable. In consequence, the tangen-
tial forces at contact fail to oppose the external force Fx
and a transition to dissipative dynamical friction can take
place. The breaching of the Coulomb law is however not
simultaneous. The actual onset of dynamic friction is in
close accord with experimental and simulational reports
[3,5,8]. The first disk reaches the Coulomb limit at some
time τ1, and consequently a forward wave of such events
runs through the system, with the second, third, fourth, etc.
disk reaching the Coulomb limit at times τi with τiþ1 >
τi > τ1 and i being the index of the disk. While each
realization is somewhat stochastic, averaging over 25
realizations as shown in Fig. 5 indicates that

V1ðFxÞðτi − τ1Þ ≈ xi; ð9Þ

with a wave speed V1ðFxÞ depending on the external force
Fx. In Fig. 5, upper panel, τ denotes the time that a disk
breaches the Coulomb law for the first time and xðτÞ is the
position of the disk when this takes place. For Fx ¼ 0.083,
0.087, 0.090, the corresponding velocity of this front

is 0.0014� 0.00013, 0.0022� 0.00015, and 0.0028�
8 × 10−5. These velocities are explained below.
The actual sliding begins at the leading (last) disk, with a

backward wave of sliding traveling from the last to first disk.
This is also in accord with experimental and simulational

FIG. 3. Dynamical response of MðtÞ at various values of Fx.
The two lowest values are within the range of existence of an
oscillatory instability (see Fig. 2), but Fx is not large enough to
trigger a transition to dynamical friction. For Fx ¼ 0.062, the
system is stable and MðtÞ remains minute. The largest value of
Fx ¼ 0.083 is after the birth of the new pair of complex
eigenvalues, and now the oscillatory instability triggers the
transition to dynamical scaling.

FIG. 4. The actual trajectory in the x-y plane (for t ≈ 17500)
that is induced by the instability. Here we show the fourth grain
(i ¼ 4), but this is representative for all grains.

FIG. 5. Upper panel: The wave of breaching of the Coulomb
law, starting with the first disk and ending with the last. Every
realization is noisy, but averaging on 25 realizations yields this
plot which supports a wave velocity V1ðFxÞ that depends on the
external force Fx. Lower panel: The wave of actual sliding,
starting with the last disk and ending with the first. This backward
running wave has a velocity V2 that does not depend on the
external force Fx.

PHYSICAL REVIEW LETTERS 124, 030602 (2020)

030602-3



observations [5,8]. The speed of the backward wave is
independent of Fx, indicating that it is an inherent elastic
wave, as is explained below. It is also in agreement with
observations that the speed V2 of the backward wave of
sliding is much faster than V1 [3]. In the lower panel of
Fig. 5 the times τ� are measured backwards from the first
sliding of the last disk, and x� is the position where the
sliding occurs. Since the velocity of the backward wave is
independent of Fx, the lower panel of Fig. 5 is obtained by
averaging the data from simulations at the same three values
of Fx as the ones shown in the upper panel.
Theory.—To understand the wave speeds, we discuss

first the backward wave of detachment which is dominated
by an elastic transverse wave of up-down motion in the y
direction. Examining the 30 eigenfunctions of the Jacobian
matrix J, one identifies only one which consists of a pure y
transverse wave; see Fig. 6. This eigenfunction has no
projection on either longitudinal or angular degrees of
freedom. It has an eigenfrequency ω ≈ 0.235 and a wave-
length of approximately 2. Thus the associated k vector
is k ≈ 2π=2 ≈ π, determining a velocity V2 ≈ 0.235=π ≈
0.075 in excellent agreement with the measured value of
the backward velocity.
The forward wave of Coulomb breaching is not related to

the internal elastic waves in the system. Rather, it is related
to the imaginary part of the pair of complex eigenvalues,
which governs the exponential growth rate of the spiral
trajectories and therefore the push by the ith disk on the
(iþ 1)th disk, resulting in breaching the Coulomb thresh-
old. Indeed, while the backward wave speed is basically
independent of Fx, the forward wave speed must be a
function of Fx since the imaginary part of the eigenvalues
grows with increasing Fx. For the three values of Fx shown
in the upper panel of Fig. 5, the imaginary part of the
associated eigenvalue is 0.00024,0.00077, and 0.001,
respectively. Using the values of the velocities measured
for the three different values of Fx, we compute the ratios

of these velocities to the growth rates to find an approxi-
mate constant value 4.3� 1.5.
The transition as seen from the dynamics of the center of

mass of the whole system is shown in the upper panel of
Fig. 7. Here the x and y components of the center of mass
are defined as Cx

mass ≡ ð1=NÞPN
i xi and equivalently for y.

In the upper inset we show Cy
mass, which is oscillating

without growth. The main figure displays Cx
mass as a function

of time. The lower inset shows the transition itself, which on
the scale shown appears like a simple first order transition
from static to dynamics with a fixed velocity Vx

mass, hiding
all the microscopic richness discussed above. In the lower
panel we display the dependence of the constant velocity
in the dynamic friction regime on the external force Fx.
The inset indicates a liner relation between the two, with the
best fit reading

Vx
mass ≈ −1.3 × 10−5 þ 4.5 × 10−4Fx: ð10Þ

Summary.—The rich physics associated with the tran-
sition from static to dynamical friction is demonstrated

FIG. 6. Projection of the shear-wave eigenfunction of the
Jacobian matrix on the degrees of freedom ql, x modes for
l ¼ 1–10, y modes for l ¼ 11–20, and angular modes for
l ¼ 21–30. This mode is predominantly a y shear wave that
is responsible for initiating the sliding motion. The wavelength of
this up-down shear wave is approximately 2.

FIG. 7. The transition from static to dynamical friction as
measured by the dynamics of the center of mass. Upper panel:
The motion of the x component of the center of mass for
Fx ¼ 0.087. The upper inset shows the y component of the
center of mass that oscillates without growth. The lower inset
shows the transition itself from static to dynamics. Lower panel:
The dynamics of the x component of the center of mass for
different values of Fx. The inset shows how the velocity of the
center of mass depends on Fx.
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using a very simple model of N disks on a flat substrate,
interacting via the often used Hertz and Mindlin forces.
By increasing the external force Fx, Newtonian dynamics
without further phenomenological assumptions result in
an oscillatory instability that ends up with the observed
transition. In agreement with much more complicated
experimental and simulational examples, the transition is
associated with forward and backward running waves of
events that accompany the transition. An advantage of the
simple model is that the instability, its development, and
the wave speeds observed can all be understood in full
detail. It should be of utmost interest to examine the
mechanism described here also in experimental contexts,
since we expect the instability to exist equally well in two-
and in three-dimensional contexts [20].
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