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Communication in a network generally takes place through a sequence of intermediate nodes connected
by communication channels. In the standard theory of communication, it is assumed that the
communication network is embedded in a classical spacetime, where the relative order of different nodes
is well defined. In principle, a quantum theory of spacetime could allow the order of the intermediate points
between sender and receiver to be in a coherent superposition. Here we experimentally realize a tabletop
simulation of this exotic possibility on a photonic system, demonstrating high-fidelity transmission of
quantum information over two noisy channels arranged in a superposition of two alternative causal orders.
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Introduction.—Communication from a sender to a
receiver generally takes place through a series of inter-
mediate nodes. For example, an email sent over the internet
is generally relayed by a sequence of servers before landing
in the receiver’s inbox. Classically, the order of the
intermediate nodes is always well defined. The communi-
cation network is embedded in a classical spacetime where
the causal relations between points are fixed. In quantum
theory, instead, the superposition principle suggests that
there may exist scenarios where spacetime itself is in a
superposition of alternative configurations [1,2]. A com-
munication network embedded in a quantum spacetime
could give rise to new scenarios where the communication
channels act in a quantum superposition of orders [3,4] or
in some other form of indefinite order [5].
The extension of communication theory to scenarios

where quantum channels act in a superposition of orders
was recently addressed in a series of theoretical works
[6–10]. These works demonstrated various advantages over
the standard communication model of quantum Shannon
theory [11], where the order of communication channels is
well defined. For example, Ref. [6] showed that two
completely depolarizing channels acting in a superposition
of two orders can transmit a nonzero amount of classical
information, whereas in the standard model they would
completely block any kind of information. Similar advan-
tages arise in the transmission of quantum information [7],
sometimes leading to a complete removal of the noise [8].
To what extent these advantages are specific to super-
positions of causal orders, rather than being generic to other
forms of coherent superpositions of communication

protocols, is currently a matter of debate [7,9,12–15].
Nevertheless, the advantages of the superposition of orders
suggest that having access to quantum superpositions of
spacetimes could have major consequences on the power of
quantum communication networks.
The search for experimental evidence of quantum space-

times has attracted increasing interest in recent years
[16–19]. Still, no direct observation has been possible so
far. An alternative approach is to simulate the superposition
of spacetimes through the already accessible physics taking
place in a fixed, classical spacetime. The action of two
communication channels connected in a quantum super-
position of causal orders can be reproduced by setting up a
mechanism that routes photons through two optical devices
and controls the order in which the devices are visited
[20–22]. In this way, it is possible to simulate quantum
communication networks where the communication chan-
nels are embedded in a superposition of spacetimes, and to
witness the advantages of the corresponding communica-
tion model.
Here we experimentally demonstrate the possibility of

high-fidelity transmission of both classical and quantum
information through noisy channels in a superposition of
causal orders [6–8]. Our results offer a glance at exotic
communication scenarios that could arise in quantum
spacetimes, and, at the same time, contribute to the
development of a new technology of coherent control over
multiple transmission lines, with applications beyond the
study of communication protocols with superpositions of
orders. Indeed, the ability to coherently route photons
through multiple optical devices enables not only
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communication in a superposition of causal orders but also
a variety of new communication protocols involving super-
positions of alternative communication channels [9,12,23],
superpositions of alternative directions of communication
[24], and superpositions of alternative encoding or
decoding operations [13]. The high level of accuracy
achieved by our setup can also benefit the realization of
these protocols, thereby contributing to the exploration of a
broader class of quantum communication networks where
the communication takes place in superpositions of alter-
native configurations.
Background.—In a standard communication scenario, a

sender transmits messages to a receiver by encoding them in
the internal state of a quantum particle and then sending it to
the receiver through a sequence of noisy channels. The
action of a generic quantum channel E on a given quantum
input state ρ is conveniently expressed in the Kraus repre-
sentationEðρÞ ¼ P

i EiρE
†
i , where fEig are linear operators

satisfying
P

i EiE
†
i ¼ I, I being the identity operator.

The ability of a channel to transmit classical and
quantum information is quantified by its classical capacity
C and quantum capacity Q, respectively. The classical
capacity C is the maximum number of bits that can be
reliably transmitted per channel use, in the limit of
asymptotically many channel uses [25,26]. A lower bound
on the classical capacity is provided by the one-shot
accessible information,

C1 ¼ max
fpx;ρxg

max
fPyg

HðX∶YÞ; ð1Þ

where the maximum is over all possible input ensembles
fpx; ρxg and output measurements fPyg, and HðX∶YÞ is
the mutual information between x and y.
The quantum capacity Q is the maximum number of

qubits that can be reliably transmitted per channel use,
again in the limit of asymptotically many uses [27–29]. A
lower bound to the quantum capacity is the one-shot
coherent information,

Q1 ¼ max
ρ

IcðρÞ; ð2Þ

where IcðρÞ ≔ S½EðρÞ� − Seðρ; EÞ is the coherent informa-
tion of the state ρ [30], defined in terms of the
von Neumann entropy, SðρÞ ≔ −Tr½ρ log2 ρ�, and of the
entropy exchange, Seðρ; EÞ ≔ S½ðIR ⊗ EÞðjΨρihΨρjÞ�,
jΨρi being any purification of ρ using a reference quantum
system R.
Communication networks and superposition of orders.—

In a network scenario, the communication between a sender
and a receiver proceeds through a sequence of intermediate
nodes, located at different spacetime points and connected
by communication channels. Here we consider the case of
n ¼ 2 channels, E and F , the former connecting spacetime

points P and P0 and the latter connecting spacetime points
Q and Q0.
In the standard setting, the causal relations among

spacetime points are well defined, and so is the order of
the intermediate nodes between the sender and receiver,
located at spacetime points S and R, respectively. For
example, one can have the order S ≼ P ≼ P0 ≼
Q ≼ Q0 ≼ R, indicating that signals can be transmitted from
S to P, from P to P0, and then toQ and toQ0. Assuming that
no noise takes place in the transmission from S toP,P0 toQ,
andQ toR, this configuration leads to theoverall channelFE
connecting the sender and receiver. In another spacetime
configuration, one could have the order S ≼ Q ≼ Q0 ≼
P ≼ P0 ≼ R, corresponding to the channel EF . In either
configuration, the sender and receiver are assumed to know
the structure of spacetime, and therefore to knowwhether the
overall channel between them is EF or FE.
New possibilities arise when the background spacetime

is treated quantum mechanically [7]. One can associate the
basic configurations S ≼ P ≼ P0 ≼ Q ≼ Q0 ≼ R and S ≼
Q ≼ Q0 ≼ P ≼ P0 ≼ R to two orthogonal states j0i and j1i,
forming a basis for an effective two-dimensional quantum
system, called the order qubit. The order qubit can be
interpreted as a coarse-grained description of a quantum
spacetime in which the communication network is
embedded. In this scenario, the basis states j0i and j1i
represent two distinct semiclassical states of the gravita-
tional field. Coherent superpositions semiclassical states
arise generically across various theories of quantum gravity
[17–19].
The insertion of two quantum channels E and F into a

quantum spacetime in the state ω can be described by
the quantum switch (QS) transformation [3,4],
Sω∶ðE;F Þ ↦ SωðE;F Þ, defined as

SωðE;F ÞðρÞ ≔
X

i;j

Wijðρ ⊗ ωÞW†
ij; ð3Þ

with

Wij ≔ EiFj ⊗ j0ih0j þ FjEi ⊗ j1ih1j; ð4Þ

where fEig and fFjg are the Kraus operators of E and F .
The quantum channel (3) can be reproduced in the ordinary,
classically well-defined spacetime, using, e.g., photonic
systems [20–22].
It is worth noting that quantum channel (3) is indepen-

dent of the choice of Kraus operators fEig and fFjg.
Physically, this means that, in principle, its realization does
not require access to the environment of the communication
devices. This is not the case, however, in all the existing
implementations of the channel SωðE;F Þ (including the
present one), where access to the environments of both
channels E and F is essential for producing the
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superposition of causal orders while operating in a classical
spacetime [9,31].
The interference between the two alternative orders

provides advantages over standard quantum Shannon
theory, enabling communication through channels that
individually block information [6–9]. While these advan-
tages crucially rely on the order qubit being used to assist
the decoding, it is worth stressing that they do not use the
order qubit as a way to bypass the given communication
channels. Indeed, the transformation of resources
Sω∶ðE;F Þ ↦ SωðE;F Þ does not give the sender and the
receiver a way to transmit information independently of the
channels E and F [7,15].
The advantages in Refs. [6–9] involve pairs of Pauli

channels, of the form Ep⃗ ¼ P
3
i¼0 piσiρσi and F q⃗ ¼P

3
i¼0 qiσiρσi, where ðσ0; σ1; σ2; σ3Þ are the Pauli matrices

ðI; X; Y; ZÞ. Suppose that the two channels Ep⃗ and F q⃗ are
combined in a superposition of orders, with the control
qubit in the state ω ¼ jþihþj. From Eqs. (3)and (4), the
resulting channel SωðEp⃗;F q⃗Þ acts as

SðEp⃗;F q⃗ÞðρÞ ¼ rþCþðρÞ ⊗ jþihþj þ r−C−ðρÞ ⊗ j−ih−j;
ð5Þ

where rþ and r− are the probabilities defined by
r− ≔ r12 þ r23 þ r13, rij ≔ piqj þ pjqi, and rþ ≔ 1 − r−,
and Cþ and C− are the Pauli channels defined by

Cþ ¼ ðP3
i¼0 rii=2Þρþ

P
3
i¼1 r0iσiρσi

rþ
ð6Þ

and

C− ¼ ½r12σ3ρσ3 þ r23σ1ρσ1 þ r31σ2ρσ2�
r−

: ð7Þ

Hence, a receiver who measures the order qubit in the
Fourier basis fjþi; j−ig can separate the two channels Cþ
and C−, and adapt the decoding operations to them.
Experimental implementation.—In our experiment, we

demonstrated the three communication protocols of
Refs. [6–8] to a high degree of accuracy. As shown in
Fig. 1, photon pairs were generated by means of the process
of spontaneous parametric down-conversion. The idler
photon was used as a herald and the target photon was
fed into the quantum channel after encoding by the sender
and then detected by the receiver. In our realization of the
switched channel (5), photonic polarization acts as the
information carrying qubit, while the spatial modes are
used as the order qubit. Spatial modes were introduced by
BS1 to switch the two channels Ep⃗ and F q⃗, and BS2 was
used to project the control qubit onto j�ic. We assembled
two quarter wave plates (QWP) and a half wave plate
(HWP) to achieve the operations σ0, σ1, σ2, and σ3. After

these four operations were applied in four separate experi-
ments, arbitrary Pauli channel Ep⃗ can be obtained by
postprocessing the experimental outcomes, mixing its
statistics with probabilities p⃗.
To fully characterize the action of the channel SωðE;F Þ

on an arbitrary input state ρ, we performed quantum
process tomography [32–34], where the sender prepared
signal states jHi, jVi, jDi, jAi, jRi, and jLi and the
observables σ1, σ2, and σ3 were measured by the receiver. A
generic channel E can be reconstructed from the matrix γij
in the expression EðρÞ ¼ P

ij γijσiρσj.
Quantum communication with entanglement-breaking

channels.—Consider a bit flip channel BsðρÞ ¼ ð1 − sÞρþ
sσ1ρσ1 and a phase flip channel PtðρÞ ¼ ð1 − tÞρþ
tσ3ρσ3, corresponding to Pauli channels Ep⃗ and F q⃗ with
p⃗ ¼ ð1 − s; s; 0; 0Þ and q⃗ ¼ ð1 − t; 0; 0; tÞ, respectively [7].
For s ¼ t ¼ 1=2, the two channels are entanglement break-
ing, and therefore unable to transmit any quantum infor-
mation. In contrast, the channel C− of Eq. (7) is the unitary
gate σ2, and therefore it allows for the noiseless heralded
transmission of a qubit, meaning that the receiver can
decode the message without any error through the
channel C−.
The possibility of noiseless heralded quantum commu-

nication is an important difference between the communi-
cation model with independent quantum channels in a
superposition of orders and a related communication
model with independent quantum channels traversed in a

HWP QWP PBS BS RM SPDFilter FC

L
as

er
pp

K
T

P

DL

BS2

BS 1

FIG. 1. Experimental setup. A cw violet laser (power is 2 mW,
working at 404 mm) is incident on and pumps a type-II cut
ppKTP crystal generating photon pairs of degenerate wavelength
at 808 nm. One of the photons acts as a trigger and the other is
used to transmit information from sender to receiver. In the QS,
the information is encoded in the photon’s polarization states
while its spatial modes act as the control qubit. The Pauli
channels, Ep⃗ and F q⃗, are each composed of two QWPs and a
HWP. A trombone-arm delay line and a piezoelectric transducer
are used to set the path length and the relative phases of the
interferometer. HWPs were used after BS1 and before BS2 to
compensate the reflection phases introduced by the BSs. HWP,
half wave plate; QWP, quarter wave plate; PBS, polarizing beam
splitter; BS, beam splitter (T=R ¼ 50=50); RM, reflection mirror;
FC, fiber coupler; SPD, single photon detector; DL, trombone-
arm delay line.
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superposition of paths [9,12,23]. The transmission of
quantum information through one of two channels E and
F is described by a controlled channel with Kraus
operators [9,12,35]

W0
ij ¼ βjEi ⊗ j0ih0j þ αiFj ⊗ j1ih1j; ð8Þ

where αi and βj are complex amplitudes, and the states j0i
and j1i represent paths of the information carrier, going
through channels E and F , respectively. In this setting,
Gisin et al. showed that preparing the path in a coherent
superposition leads to a heralded reduction of the noise
[23]. More recently, it was shown that the superposition of
paths can also increase the overall capacity, enabling
deterministic communication through depolarizing chan-
nels [12] and even complete erasure channels [9].
The communication enhancements due to superpositions

of paths Eq. (8) and superposition of orders Eq. (4) share
several common features, in particular the crucial role of
coherence between alternative configurations of the com-
munication channels. Nevertheless, they also exhibit inter-
esting differences. One such difference concerns the
possibility of noiseless heralded communication: while
placing two independent noisy channels in a superposition
of orders can lead to heralded noiseless communication,
placing them on two alternative paths only lead to a partial
noise reduction [7,8]. Interestingly, this feature is balanced
by the fact that communication enhancements due to
superpositions of paths are more common, while the
enhancements due to the superposition of order require a
specific matching between coherence in the superposition
and commutativity of the channels [14].
While every real experiment involves noise and imper-

fections, the in-principle possibility of noiseless commu-
nication through superposition of orders suggests that the
experimental fidelities can be arbitrarily close to 1. In our
experiment, we pushed toward this target by adopting a
phase-locked system (described in Ref. [36]) to ensure the
stability of the path interferometer. Thanks to phase lock-
ing, we managed to obtain an average fidelity of 0.9747�
0.0012 with the unitary gate σ2 predicted by the theory. In
addition, we used the reconstructed channel matrix γij to
find the input state that maximizes the coherent information
in Eq. (2). The optimization can be reduced to three real
parameters ðα; θ;ψÞ by parametrizing the qubit state ρ as
ρ¼α0jϕihϕjþð1−α0Þjϕ⊥ihϕ⊥j, where jϕi ¼ cosðθÞj0iþ
sinðθÞeiψ j1i and jϕ⊥i ¼ sinðθÞj0i − cosðθÞeiψ j1i are basis
states. Since the entropy exchange is independent of the
choice of purification, the parameters ðα0; θ;ψÞ completely
determine the coherent information.
Figure 2 shows the experimental results for the coherent

information Ic of the channel C− and of the whole channel
SðBs;PtÞ. For channel C−, the result is a one-shot coherent
information Q1 of about 0.812� 0.003, obtained with
parameters α0 ¼ 0.500, θ ¼ 0.0723π, and ψ ¼ 0.790π.

The dependence of the coherent information Ic on α0
and θ is shown in Fig. 2(b) for fixed ψ ¼ 0.790π. More
generally, Q1 of the channel SðBs;PtÞ is further show in
Fig. 2(c) as a function of t, with s ¼ t. One can find out
that, as long as t > 0.62, Q1 of SðBt;PtÞ (red line)
surpasses the coherent information when the two channels
are combined in a fixed order (black line). Our results (blue
dots) verified the existence of the advantage of indefinite
causal order and the possibility of heralded, high-fidelity
communication. The deviation of the channel capacities
from their theoretical predictions is due to imperfect
channel simulations and measurement error.
An even more radical example of transmission of

quantum information in a superposition of order corre-
sponds to two entanglement-breaking channels, F ðρÞ ¼
1=2ðσ1ρσ1 þ σ2ρσ2Þ [8]. In normal conditions, the channel
F cannot transmit any quantum information. Still, when
two such channels are inserted in the QS, the channels Cþ
and C− are both unitary, enabling the deterministic noise-
less transmission of one qubit. This effect is more dramatic
than the aforementioned heralded noiseless communica-
tion, as heralded noiseless transmission alone is not enough
to guarantee a nonzero quantum capacity.
In our experiment, we find that the channels Cþ and C−

have fidelities 0.9823� 0.0013 and 0.9846� 0.0014 with
the corresponding unitary gates [Figs. 2(d) and 2(e)]. The
one-shot coherent informationQ1 is 0.855� 0.004 and can
be obtained when α0 ¼ 0.500, θ ¼ 0.7575π, and
ψ ¼ 0.155π. Figure 2(f) reports the result of coherent
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FIG. 2. Transmission of quantum information through entan-
glement-breaking channels in a superposition of causal orders.
(a) Real part of the reconstructed matrix of SðBs;PtÞ, for
s ¼ t ¼ 1=2. (b) Coherent information Ic for the channel C−
with s ¼ t ¼ 1

2
as a function of θ and α0, for fixed ψ ¼ 0.790π.

(c) One-shot coherent information Q1 for the channel SðBt;PtÞ
with t ∈ ½0; 1�. The experimental results are marked as blue dots,
while the corresponding theoretical predictions are plotted as the
red line. For comparison, the one-shot coherent information of
the two dephasing channels combined in a definite order is also
shown as the black line. (d),(e) Real parts of the reconstructed
matrices of Cþ and C− of the channel SðF ;F Þ. (f) Coherent
information Ic for channel SðF ;F Þ as a function of θ and α0, for
fixed ψ ¼ 0.155π. Error bars are not visible in the figure as they
are smaller than the marker size.
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information Ic of channel SðF ;F Þ varying with the
parameters α0 and θ, while ψ is set to be 0.155π.
Transmitting classical information with depolarizing

channels.—Consider two completely depolarizing chan-
nels, DðρÞ ¼ 1=4

P
3
i¼0 σiρσi. In this case, the resulting

channels Cþ and C− can transmit classical information,
despite the fact that no classical information can be sent
through each depolarizing channel individually [6]. This
scenario demonstrates an advantage over all communica-
tion protocols where multiple depolarizing channels are
used in a sequence, and any intermediate operation between
them does not transfer information from the internal
degrees of freedom of the particle to its path [9]. This
protocol was experimentally demonstrated in Ref. [37]
using orbital angular momentum modes as the information
carriers. Our implementation uses polarization states,
which achieve a higher communication performance,
allowing us to demonstrate a nonzero communication
capacity with more than 38.7 standard deviations.
Figures 3(a) and 3(b) illustrate the real parts of Cþ and C−

of reconstructed SðD;DÞ (see the imaginary parts in
Ref. [36]). The fidelities are 0.9989� 0.0001 and
0.9903� 0.0017, thereby establishing the high quality of
our channel. To lower bound the classical capacity, we
chose three kinds of signal states, specifically, fjHi; jVig,
fjDi; jAig, and fjRi; jLig; the input distribution pðxÞ is set
to maximize the mutual information according to Eq. (1).
The mutual information with respect to these three choices
of signal states is 0.0422� 0.0010, 0.0426� 0.0011, and
0.0432� 0.0009, matching well the theoretical value of
0.0488 [Fig. 3(c)]. The error bars are estimated by
Monte Carlo simulations.
Conclusion.—We have experimentally demonstrated the

high-fidelity transmission of quantum information through
communication channels in a coherent superposition of
alternative orders. Our experiments can be viewed as
simulations of exotic communication scenarios where the
sender and the receiver are embedded in a quantum
spacetime, and the order between the noisy processes
occurring in two different regions is indefinite. At the
same time, the accurate coherent control over multiple
communication lines, achieved in our setup, is a flexible

primitive that can also be used to demonstrate more general
communication advantages, arising from superpositions of
paths [9,12,23], directions of communication [24], or
encoding operations [13]. Our results suggest that coherent
control over multiple communication channels may also
have applications to quantum communication in the ordi-
nary, classically well-defined spacetime.

We thank Kang-Da Wu, Jin-Shi Xu, Xiao-Ye Xu, Chao
Zhang, Kai Sun, and Yong-Xiang Zheng for valuable
discussions. This work was supported by the National
Key Research and Development Program of China
(No. 2017YFA0304100, No. 2016YFA0301300,
No. 2016YFA0301700), NSFC (No. 11774335,
No. 11874345, No. 11821404, No. 11675136), the Key
Research Program of Frontier Sciences, CAS (No. QYZDY-
SSW-SLH003), the Fundamental Research Funds for the
Central Universities, the Anhui Initiative in Quantum
Information Technologies (No. AHY020100,
No. AHY060300), the John Templeton Foundation
(Grant No. 60609, Quantum Causal Structures), the
Croucher Foundation, and the Hong Research Grant
Council through Grants No. 17326616 and
No. 17307719. This publication was made possible through
the support of a grant from the John Templeton Foundation.
The opinions expressed in this publication are those of the
authors and do not necessarily reflect the views of the John
Templeton Foundation.

Note added.—Recently, we became aware of a work by
Goswami et al. [37] that independently demonstrated the
enhanced effect of a superposition of causal orders on
transmitting classical information.
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