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We consider the precision Δφ with which the parameter φ, appearing in the unitary map Uφ ¼ eiφΛ,
acting on some type of probe system, can be estimated when there is a finite amount of prior information
about φ. We show that, if Uφ acts n times in total, then, asymptotically in n, there is a tight lower bound
Δφ ≥ π=½nðλþ − λ−Þ�, where λþ, λ− are the extreme eigenvalues of the generator Λ. This is greater by a
factor of π than the conventional Heisenberg limit, derived from the properties of the quantum Fisher
information. That is, the conventional bound is never saturable. Our result makes no assumptions on the
measurement protocol and is relevant not only in the noiseless case but also if noise can be eliminated using
quantum error correction techniques.
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Introduction and statement of result.—The Heisenberg
limit (HL) is the central concept for the whole field of
quantum metrology research, as it epitomizes the potential
of optimal quantum metrology protocols to surpass stan-
dard schemes that are restricted by the so-called standard
quantum limit (SQL) [1–9]. For the canonical example
of interferometry to measure a stationary optical phase,
these two limits are expressed in terms of the number of
photon passes through the unknown phase. The HL for the
estimation precision is conventionally given as 1=n, while
the SQL corresponds simply to the 1=

ffiffiffi
n

p
shot-noise

precision limit. This scaling improvement can be achieved
using entangled photon states [10] or multiple passes [11],
or a combination of both [12]. In all such cases, the
essential feature is that phase is being accumulated coher-
ently over the n uses of the probe system, unlike in standard
schemes where each probe (photon) interferes only with
itself and the whole procedure is repeated n times, gather-
ing statistics that leads to 1=

ffiffiffi
n

p
improvement of precision.

In a generalized phase estimation scenario, evolution of a
probe system is given by a unitary Uφ ¼ expðiφΛÞ, where
Λ is an arbitrary Hermitian generator of the transformation.
In what follows, we allow the spectrum of Λ to be arbitrary,
apart from being bounded from above and from below
by λþ and λ−, respectively. Hence, the parameter φ is not
necessarily restricted to the ½0; 2πÞ interval. Analysis of the
problem using the concept of the quantum Fisher informa-
tion (QFI) and the quantum Cramér-Rao (CR) bound leads
to the following SQL and HL, respectively [1]:

ΔφSQL ≥
1ffiffiffiffiffi

kn
p ðλþ − λ−Þ

; ΔφHL ≥
1ffiffiffi

k
p

nðλþ − λ−Þ
;

ð1Þ

where k is the number of repetitions of the experiment, n
is the number of applications of the unitary Uφ in a single
repetition of the experiment. The SQL corresponds to the
situation when n independent interrogations of the probe
system are performed in a single experiment, while the HL
takes into account the most general interrogation scheme
involving n uses of Uφ. That may include coherent
sequential probes and entangled probes, as well as the
most general adaptive schemes. Interestingly, in such
noiseless unitary parameter estimation scenarios, there is
no advantage to using adaptive strategies, as the simplest
sequential scenario where the phase is being coherently
imprinted on a single probe n times already leads to the
above stated HL. The fundamental advantage that entan-
glement and adaptiveness offer emerges in the CR bound
only when noise is present [13].
Importantly, by the nature of the CR bound, the above

bounds are guaranteed to be saturable only in the limit of
many repetitions, k → ∞. On the other hand, when con-
sidering k repetitions, the total number of unitary oper-
ations involved is kn. The most general way of using those
resources is to allow entanglement between all, in which
case the HL in terms of total resources is 1=ðknÞ rather than
1=ð ffiffiffi

k
p

nÞ scaling [14]. That corresponds to using k ¼ 1 in
Eq. (1), in which case saturability cannot be guaranteed.
In many papers, the saturability discussion focuses on the

existence of a measurement for which the Fisher informa-
tion of the corresponding probabilistic model coincides with
the QFI [15]. Such a measurement indeed always exists,
defined by the eigenbasis of the symmetric logarithmic
derivative operator. However, even with such a measure-
ment chosen, the existence of an estimator that saturates the
CR bound is guaranteed in single-shot scenarios only if
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the value of the parameter is known exactly beforehand or in
the case of a narrow class of probabilistic models called the
exponential family [16].
In this Letter, we prove that the asymptotically tight HL

includes an additional π factor,

ΔφHL ≥
π

nðλþ − λ−Þ
: ð2Þ

More formally, limn→∞nΔφHL ≥ π=ðλþ − λ−Þ. The condi-
tion under which we prove this bound is that any prior
information is limited. For example, one could require that
there be a prior probability distribution for φ that is
bandlimited or piecewise constant, or that the measurement
work over some finite region in φ space. Most importantly,
the prior information must be independent of n. That is, if
you are given more resources n, you cannot change the
task by demanding a sharper prior distribution or further
restricting the region of validity of your measurement. This
requirement is necessary to make the HL a meaningful
concept; otherwise, the prior information is comparable
to the information from the measurement itself. The
π-corrected limit we derive comes precisely from elimi-
nating the influence of any (implicit or explicit) prior.
Equation (2) was conjectured in [17], but the argument

was indirect and restricted to the standard parallel qubit
phase estimation scheme with Gaussian prior, and the
potential impact of adaptiveness was not analyzed. Since
the HL is the key benchmark against which any theoreti-
cally conceived or experimentally implemented quantum-
enhanced strategy is compared, it is essential to phrase it
as an actual attainable limit, unlike its most commonly
encountered form [Eq. (1)], which is not achievable even in
principle. Our result is also timely, given the recent revival
of interest in quantum error correction inspired metrologi-
cal protocols that allow estimation with HL scaling even
in the presence of some particular noise types [18–21].
The proper phrasing of the HL is vital not only for idealized
noiseless metrological scenarios but also in the case of
more realistic noisy ones.
In our analysis, we use the Bayesian approach to

estimation, also called random parameter estimation, in
which a probability distribution pðφÞ is given that describes
the prior knowledge of φ. In the case where no prior is
known, also called nonrandom parameter estimation [22],
the usual approach is to require that the measurement be
locally unbiased. Local unbiasedness allows one to derive
the traditional (not π-corrected) form of the HL given in
Eq. (1) and ensures that, typically, the estimator approx-
imately achieves the claimed mean-square error (MSE)
over some finite range of φ. However, it does not ensure
that this finite region is independent of n. Since the true
value of φ cannot be known before making the measure-
ment, a useful measurement must work over a fixed region,
even as n increases. Thus, it is appropriate to consider the
average of theMSE over some fixed region.Mathematically,
that is equivalent to Bayesian estimationwith a flat prior over

the region, and so there is no loss of generality in using a
Bayesian approach.
It is necessary to exclude pathological priors, which

could lead to arbitrarily high precision. We do this by
requiring the prior to be well approximated by a finite
bandwidth function (i.e., a function whose Fourier trans-
form has bounded support). As we will show, this is not a
very restrictive condition; in particular, the results will
be valid for any prior that may be approximated by a
weighted sum of flat priors with nonzero fixed width
δ > 0: pðφÞ ≈P∞

l¼−∞ pðlδÞΘð1
2
δ − jφ − lδjÞ, where Θ is

the Heaviside step function. That includes the case where
the MSE is averaged over a finite region, used to address
cases with an unknown prior. Provided the above regularity
condition holds, the actual form of the prior becomes
irrelevant for sufficiently large n. The intuition behind this
result is that, in the limit of n → ∞, the amount of data
that can potentially be gathered on the parameter φ is
unlimited and hence overwhelms any impact of the prior
on the final precision.
Proof of result.—Consider the most general adaptive

estimation scheme, Fig. 1(a). Here jψi is the input state of a
probe system potentially entangled with an arbitrary
number of ancillary systems, and Vi, i ∈ f1;…; ng are
control unitary operations applied between interrogation
steps, where the unknown parameter is imprinted on the
probe system. The final state at the output jψn

φi is measured
using a generalized measurement described by a positive
operator valued measure fMφ̃dφ̃g, where the index φ̃
represents the estimated value of the parameter upon
attaining that outcome from the measurement. The minimal
expected (in the Bayesian sense) mean-square error in the
estimation thus reads

Δ2φ ¼ min
jψi;fMφ̃g;fVig

ZZ
dφ̃dφpðφÞhψn

φjMφ̃jψn
φiðφ̃ − φÞ2:

ð3Þ
Let us analyze the structure of the state jψi as it evolves

through the subsequent gates and control operations. Each
gate multiplies components of the state, as decomposed in
the Λ eigenbasis, by one of the eiφλ factors (λ represents
some eigenvalue ofΛ), while control operations Vi perform
a basis change. In the end, after n coherent interrogations
of the unknown parameter φ, the final state will have the
following structure:

jψn
φi ¼

Z
nλþ

nλ−

cðμÞeiφμjgμidμ; ð4Þ

where cðμÞ are complex amplitudes and jgμi are some
normalizedvectors,which, in general,will not beorthogonal.
The key feature of this state is that it has bandwidth bounded
by nðλþ − λ−Þ, as will any inner products with this state.
Now let pLðφÞ be the prior with a finite bandwidth L, so

that its Fourier transform is supported on an interval of
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length L. It is known that, in all single-generator unitary
estimation problems with quadratic cost, one may restrict
the class of measurements to rank-one projective ones
[23,24]. Let us assume for a moment a fixed input state jψi
and a measurement basis fjχig with a corresponding
estimator φ̃χ. The corresponding cost reads

Δ2φ ¼
Z

dχ
Z

dφpLðφÞjhψn
φjχij2ðφ̃χ − φÞ2: ð5Þ

Now, from [25], it is possible to find a function wLðφÞ with
bandwidth L=2 such that jwLðφÞj2 ¼ pLðφÞ. Let us define
functions fχðφÞ ¼ hψn

φjχi [which have bandwidths
bounded by nðλþ − λ−Þ] and gχðφÞ ¼ wLðφÞfχðφÞ. We
have

Δ2φ ¼
Z

dχ
Z

dφjgχðφÞj2ðφ̃χ − φÞ2: ð6Þ

The product of two bandlimited functions gives a function
that is bandlimited by the sum of the bandwidths, so gχðφÞ
has a bandwidth at most nðλþ − λ−Þ þ L=2. We can then
write

Δ2φ ¼
Z

pχCχ;φ̃χ
dχ ≥ min

χ
Cχ;φ̃χ

; ð7Þ

with

pχ ¼
Z

jgχðφÞj2dφ; ð8Þ

Cχ;φ̃χ
¼ 1

pχ

Z
jgχðφÞj2ðφ̃χ − φÞ2dφ: ð9Þ

The task of minimizing Cχ;φ̃χ
for a given φ̃χ is equivalent to

that of minimization for φ̃χ ¼ 0, because the optimal gχðφÞ
can be shifted by any amount without altering the band-
width. We may also set pχ ¼ 1 (this just sets the normali-
zation of the function g). After applying the Fourier
transform, the minimization problem reads

min
g̃ðμÞ

Z
nλþþL=4

nλ−−L=4

���� dg̃ðμÞdμ

����
2

dμ; ð10Þ

subject to the constraints
Z

nλþþL=4

nλ−−L=4
jg̃ðμÞj2dμ ¼ 1; g̃ðnλ− − L=4Þ ¼ 0;

g̃ðnλþ þ L=4Þ ¼ 0: ð11Þ
Here the boundary conditions are due to the restricted
bandwidth of gðφÞ. This is equivalent to the problem of
finding the minimum energy eigenstate in an infinite poten-
tial well with width nðλþ − λ−Þ þ L=2. The solution for
g̃ðμÞ that achieves theminimum is a sine curve [seeFig. 1(b)],
which gives minCχ;φ̃χ

¼ π2=½nðλþ − λ−Þ þ L=2�2, and
hence

Δ2φ ≥
π2

½nðλþ − λ−Þ þ L=2�2 : ð12Þ

(a)

(b) (c)

FIG. 1. Graphical representation of the proof. (a) A general adaptive phase estimation protocol with the total number of phase gates n.
(b) For a finite bandwidth prior pLðφÞ we derive the bound, which is equivalent to finding the minimum energy eigenstate in an infinite
potential well with width nðλþ − λ−Þ þ L=2. (c) A rectangular prior may be approximated to any desired accuracy by a convolution of a
slightly narrower rectangular prior with a finite bandwidth Kaiser window function, to derive the bound.
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That is, provided the prior has a limitL on its bandwidth, the
Heisenberg limit (2) holds in the limit of large n—i.e., when
the prior correction L=2 becomes negligible.
Now we need only prove that any reasonable prior pðφÞ

may be well approximated by a finite bandwidth function.
To first show this informally, let us introduce a family of
non-negative normalized finite bandwidth functions

pα;LðφÞ ¼ N αLsinc4
�
πα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLφ=4αÞ2 − 1

q �
; ð13Þ

where L is the bandwidth, α is a parameter that controls the
size of the tails, and N α is a normalization factor that
≈4

ffiffiffi
2

p
π4α7=2e−4πα for α large. This pα;LðφÞ is proportional

to the fourth power of the Fourier transform of the Kaiser
window [26] of width L=4, so has bandwidth L. The
function pα;LðφÞ has width 8α=L, beyond which the tails
are exponentially suppressed in α, like e−4πα. Thus, for
large L it approximates the Dirac delta function and
therefore any reasonable prior may be approximated by
its convolution with pα;L, i.e., pðφÞ ≈ ðpα;L � pÞðφÞ, for
which the bandwidth is also L.
In particular, we may show that, for any prior of the form

pðφÞ ≈P∞
l¼−∞ pðlδÞΘð1

2
δ − jφ − lδjÞ, the following

bound holds:

Δ2φ ≥
π2

½nðλþ − λ−Þ�2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 logΔ

Δ

r �
; ð14Þ

where Δ ¼ nðλþ − λ−Þδ. This gives

lim
n→∞

n2Δ2φHL ≥
π2

ðλþ − λ−Þ2
; ð15Þ

which after taking the square root of both sides proves
Eq. (2).
Here we just sketch the reasoning leading to the above

claim, whereas the complete proof with all the technical
details is presented in the Supplemental Material [27]. First,
we lower bound the minimal cost in the case that the prior is
actually a single rectangular prior of width δ at l ¼ 0. Note
that this will also be a legitimate lower bound for the
original problem where the prior is a weighted sum of such
rectangular priors, as the optimal strategy for this original
problem cannot perform better than the optimal strategy
when we additionally know to which δ interval the value
of our parameter is restricted. Then, we approximate the
rectangular prior via a distribution obtained by convolving
a slightly narrower rectangular distribution (narrower by
8α=L) with the pα;L function, as defined in Eq. (13) [see
Fig. 1(c)]. By setting α and L appropriately, we can
guarantee that all the deviations of the resulting cost due
to modifications of the prior from the strictly rectangular
one introduce no more than ÕðΔ−1=2Þ (Õ indicates that
logarithmic multipliers are ignored) relative correction

compared with the cost corresponding to the pα;L distri-
bution. Finally, the cost corresponding to the pα;L distri-
bution can be bounded using Eq. (12) thanks to the finite
bandwidth property of pα;L.
In the case of nonrandom parameter estimation [22],

we average the MSE over a φ interval of size δ. This is
equivalent to using a flat prior of width δ, so our bound
holds in this case also, and this is true regardless of whether
or not the estimators are unbiased. The conventional
scenario of unbiased estimators with no average does
typically mean that the measurement works well for φ
within some finite region. However, the size of that region
may depend on n. That is, as n increases, the region of
validity for an unbiased measurement may shrink with n.
This is exactly the case for the NOON states [28] that
maximize the CR bound, saturating the conventional HL in
Eq. (1). For these states, the probability distributions
obtained are periodic in φ with period π=n, and the interval
in φwhere the CR-saturating measurement is useful shrinks
exactly as fast in n as the CR bound itself.
To reiterate, to make the HL a meaningful concept, the

bound should not rely on using more and more prior
information as n increases, because that would mean that
the prior information can be comparable to the information
from the measurement itself. To derive a HL that describes
the information obtained from the measurement, one must
do as we have done and take a prior that is independent
of n or require a region of validity that is independent of n.
Then the information about φ in the limit n → ∞ comes
only from the measurement on the state. Eliminating the
influence of prior information is what gives our additional
factor of π.
Discussion.—Having derived the bound, let us now

discuss its saturability. It is known that, in the case of a
standard phase estimation problem with uφ ¼ eiφσz=2

applied in parallel to n qubits, the optimal Bayesian strategy
for flat prior distributionpðφÞ ¼ 1=ð2πÞ (φ ∈ ½−π; π�) in the
limit of large n yields Δφ → π=n [29]. Note also, that the
optimal strategy involves application of the so-called covar-
iant measurements [30], and a covariant measurement
strategy will yield the same average cost irrespective of
the form of prior. Hence the π=n limit is saturable in the
case of an arbitrary prior as well. In the case of an estimation
problem with a general generator Λ, we can say that,
provided the prior is supported on an interval smaller than
2π=ðλþ − λ−Þ, we can directly adapt the reasoning from the
standard qubit phase estimation scheme by considering our
elementary system as a qubit with only two accessible states
being the eigenstates of Λ corresponding to λþ and λ−.
This way we obtain ΔφHL ¼ π=½nðλþ − λ−Þ�. However, if
our prior is broader, then clearly using this strategy we will
not be able to discriminate between phases that differ by a
multiple of 2π=ðλþ − λ−Þ, as they effectively would lead to
the same output state. In order to discriminate between these
phases, we would need to use additional eigenstates of Λ
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corresponding to intermediate eigenvalues λ (provided they
are available). If we use levels corresponding to eigenvalues
that differ by ϵ, we may discriminate between all phases that
differ by less than 2π=ϵ. Note that, for our purposes, the
minimal level splitting ϵ may be effectively obtained as a
difference between sums of a certain finite number of energy
levels ϵ ¼ P

i∈fi1;…;isg λi −
P

j∈fj1;…;jsg λj, and a result may
be smaller than the minimal level splitting in the Λ itself.
Since the discrimination error drops exponentially with the
number of resources used, we may sacrifice sublinear (in n)
uses of the channel for the purpose of this additional
discrimination task and this will not affect the final scaling.
The phase estimation problem may be viewed as a

special case of a more general frequency estimation
problem, where the probe system is allowed to be inter-
rogated for the total interrogation time T and the goal is to
estimate a frequencylike parameter ω entering into the
Hamiltonian of the system as H ¼ ωG, with G being some
Hermitian operator. The total interrogation time T may be
split into a number of shorter evolution steps each lasting
time t ¼ T=n. Assuming the prior distribution pðωÞ sat-
isfies the regularity assumption and can be written as a sum
of rectangular priors of some finite width δω, we may repeat
the whole reasoning as presented above by formally
identifying φ ¼ ωt, Λ ¼ −G, and n ¼ T=t and arrive at

Δω ≥
π

Tðλþ − λ−Þ
: ð16Þ

This is the valid asymptotically saturable bound for the most
general frequency estimation adaptive strategies in the limit
of long total interrogation time T. In particular, in all the
cases where, despite the presence of noise, the Heisenberg
scaling is being recovered via, e.g., application of quantum
error correction inspired techniques [18–21,31–33], it is the
above bound that should be used as a operationally mean-
ingful figure of merit of such protocols and not the standard
QFI-based one.
Finally, since Eq. (14) is not tight for finite n, the form of

the exact achievable bound in the nonasymptotic case is an
interesting open question for future research.
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