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We consider a three-layer Sejnowski machine and show that features learnt via contrastive divergence
have a dual representation as patterns in a dense associative memory of order P ¼ 4. The latter is known to
be able to Hebbian store an amount of patterns scaling asNP−1, whereN denotes the number of constituting
binary neurons interacting P wisely. We also prove that, by keeping the dense associative network far from
the saturation regime (namely, allowing for a number of patterns scaling only linearly with N, while P > 2)
such a system is able to perform pattern recognition far below the standard signal-to-noise threshold. In
particular, a network with P ¼ 4 is able to retrieve information whose intensity isOð1Þ even in the presence
of a noise Oð ffiffiffiffi

N
p Þ in the large N limit. This striking skill stems from a redundancy representation of

patterns—which is afforded given the (relatively) low-load information storage—and it contributes to
explain the impressive abilities in pattern recognition exhibited by new-generation neural networks. The
whole theory is developed rigorously, at the replica symmetric level of approximation, and corroborated by
signal-to-noise analysis and Monte Carlo simulations.
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Artificial intelligence is nearly everywhere in today’s
society and has rapidly changed the face of economy,
communication and science. Its global success is mainly
due to modern neural-network’s architectures that allow
deep learning [1–3] and, particularly relevant for the
present Letter, pattern recognition at prohibitive noise
levels [4]. Despite the pervasiveness of such technologies,
a clear rationale of the underlying mechanisms is still
lacking.
The statistical mechanics of disordered systems has been

playing a primary role in the theoretical investigation of
neural networks since the early studies by Amit, Gutfreund,
and Sompolinksy on pairwise associative neural networks
[5], and it still constitutes a valuable tool toward an
explanation of the impressive skills of modern nets. For
instance, recently, Metha and Schwab have highlighted the
profound link between deep learning and renormalization
group [6], Krotov and Hopfield have showed a duality
between higher-order generalizations of the Hopfield
model [7], referred to as dense associative memories
(DAMs) and neural networks commonly used in (deep)
learning [8,9]. Another duality was highlighted in [10–12]
between the restricted Boltzmann machine and the
Hopfield network: the features adaptively learned (e.g.,
via contrastive divergence) in the former are exactly the
patterns retrieved by the latter; this idea shall be further
developed in the current work.
Here we consider a basic architecture for machine

learning, i.e., the restricted Sejnowski machine (RSM)

[13], that is a third-order Boltzmann machine [1], where
triples of units interact symmetrically; in the jargon of
statistical mechanics, this is just a three-layer spin-glass
with (P ¼ 3)-wise interactions. In particular, we equip this
network with one hidden layer and with two visible layers
(a primary and a mirror channel; see Fig. 1 left), which
possibly mimic the typical presence of two input sources in
biological networks (i.e., the eyes). As we show, the RSM
displays, as a dual representation, a bipartite DAM, i.e., a
bipartite Hopfield model with (P ¼ 4)-wise interactions;
see Fig. 1 right. In this dual representation, the K features
embedded in the RSM correspond to the K patterns stored
in the DAM.

FIG. 1. Schematic representations of the restricted Seinowskj
machine (left) and its dual representation in terms of a bipartite
dense associative network (right). In the former, neurons i, μ, ρ
interact 3-wisely through the coupling ξρiμ [see also Eq. (1)],
while, in the latter, neurons i, μ, j, ν interact 4-wisely through the
coupling Jjνiμ [see also Eq. (5)].
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It is worth recalling that, for a P-spin associative memory
built of N binary neurons, the largest number of
storable patterns scales as NP−1 (a result found by Baldi
and Venkatesh [14] and made rigorous by Bovier and
Niederhauser [15]); clearly for P ¼ 2 we recover the
standard Hopfield scenario [5,16]. In the last decades, the
quest for enhanced storage capacities has strongly biased
the statistical mechanical investigations, possibly limiting
alternative inspections of the computational capabilities of
these networks, which is the main focus of this work, as will
be summarized hereafter.
In the standard Hopfield model it is possible to retrieve a

number K of patterns that is extensive in N (i.e., K ¼ αN
with α ≤ 0.14) by pushing the signal-to-noise ratio to its
limit, namely by letting the magnitude S of the signal—
stemming from the pattern to be retrieved—and the
magnitude N of the (quenched) noise—stemming from
the remaining patterns providing an intrinsic glassiness—
share the same order. Should the information encoded by
patterns be affected by some source of noise, the condition
S=N ∼Oð1Þ would be deranged in favor of the noise and
retrieval capabilities would be lost. On the other hand, as
we show, if we let dense (P ¼ 4) networks operate with a
load K ¼ αN (with α > 0), these turn out to be able to
retrieve the information [∼Oð1Þ] encoded by patterns
perturbed by extensive noise [∼Oð ffiffiffiffi

N
p Þ]. This is ultimately

due to the possibility of redundant representation of
patterns [17,18], which implies a storage cost of OðN2Þ
bits per pattern. In the following we give more technical
details to prove the previous statements.
The RSM [13] considered here is built on three

layers, two of which—referred to as visible and mirror,
respectively (see Fig. 1, left panel)—are digital and made
up of N Ising neurons per layer, σ ∈ f−1;þ1gN and
τ ∈ f−1;þ1gN , while the third layer—referred to as
hidden—is analog and made of K neurons z, whose states
are i.i.d. GaussiansN ð0; β−1Þ (β > 0 tuning the level of the
fast noise in the net [5]). The model presents third-order
interactions among neurons of different layers but no
intralayer interactions (whence the restriction). Its cost
function HRSM is given by

HRSMðσ; τ; zjξÞ ¼ −
1

N3=2

XN;N;K

i;μ;ρ¼1

ξρiμσiτμzρ; ð1Þ

with i; μ ¼ 1;…; N and ρ ¼ 1;…; K. In the thermo-
dynamic limit each layer size diverges such that
limN→∞ K=N ¼ α > 0 and the factor N−3=2 keeps the
mean value of the cost function (under the quenched
Gibbs measure [19]) linearly extensive in N. The inter-
action between each triplet of neurons is encoded in the
K × N × N tensor ξ whose ρth element will be written as

ξρiμ ¼ ξρi ξ
ρ
μ; i; μ ¼ 1;…; N; ð2Þ

where ξρi ∈ f−1;þ1g is meant as the ith entry of the ρth
pattern to be retrieved in the dual bipartite DAM. Notice
that the factorization (2) ensures the symmetry of ξρiμ for
any ρ and it lies at the core of the pattern redundancy
scheme pursued here. In fact, the information contained
into a set of K binary patterns of length N is inflated into a
symmetric tensor of size KN2.
Given a small learning rate ϵ > 0, we obtain for this

network the following contrastive-divergence [20] learning
rule [21]

Δξρiμ ¼ ϵβðhσiτμzρiþ − hσiτμzρi−Þ; ð3Þ

where the subscript “þ” means that both visible and mirror
layers are set at the data input (i.e., they are clamped), while
the subscript “−” means that all neurons in the network are
left free to evolve; importantly, while clamped, visible and
mirror layers are always exposed to the same information
(i.e., σ ¼ τ ¼ ξρ).
Using the symbol Dzρ to denote the Gaussian measure

with variance β−1 [i.e., Dzρ ≡ dzρ expð−βz2ρ=2Þ
ffiffiffiffiffiffiffiffiffiffi
β=2π

p
],

the partition function Z related to the cost function (1) reads

Z ¼
X
σ;τ

Z YK
ρ¼1

Dzρ exp

�
β

N3=2

XN;N;K

i;μ;ρ¼1

ξρiμσiτμzρ

�
: ð4Þ

By construction, the couplings are symmetric (ξρiμ ¼ ξρμi)
and a detailed balance ensures that the long term relaxation
of any (not-pathological) neural dynamics is described by
the related Gibbs measure [5,10]. Marginalizing over the
hidden layer,

Pðσ; τjξÞ ¼
R
Dze−βHRSMðσ;τ;zjξÞ

Z
≡ e−βHDAMðσ;τjξÞ

Z
;

where the last equation tacitly defines the cost function of
the DAM, namely

HDAMðσ; τjξÞ ¼ −
1

2N3

XK
ρ¼1

�XN;N

i;μ¼1

ξρiμσiτμ

�2

;

¼ −
1

2N3

XN;N

i;j¼1

XN;N

μ;ν¼1

Jjνiμσiσjτμτν; ð5Þ

where Jjνiμ ¼ ðPρ ξ
ρ
iμξ

ρ
jνÞ. This decomposition shows that

the ξs play as eigenvectors for the tensor J, whose
symmetry with respect to an exchange of indices ði; μÞ
and ðj; νÞ mirrors the symmetry between the σ and the τ
variables underlying the learning rule (3). Notice that
HDAM corresponds to a (P ¼ 4)-wise bipartite Hopfield
model (see Fig. 1, right panel), namely a minimal gener-
alization of the Hebbian kernel in the classic Hopfield
reference (quite similar to autoencoders in engineering
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jargon [28]). Also, this equivalence extends the duality
between restricted Boltzmann machines and (pairwise)
Hopfield neural networks [10–12].
To start dealing with network’s capabilities, it is con-

venient to introduce generalized Mattis order parameters
Mρ defined as

Mρ ≡ 1

N2

XN;N

i;μ¼1

ξρiμσiτμ: ð6Þ

The signal-to-noise analysis for this system can be obtained
by requiring the dynamic stability of the neural state
recalling, without loss of generality, the pattern ρ ¼ 1,
that is, σiτμ ¼ ξ1iμ. Therefore, denoting with hiμ the internal
field acting on σi and τμ we get

σiτμhiμ ¼ S þN ¼ 1

2N

XK
ρ¼1

Mρξ
ρ
iμξ

1
iμ

¼ 1

2N

�
M1 þ

XK
ρ>1

Mρξ
ρ
iμξ

1
iμ

�
: ð7Þ

As the signal term inside the brackets in (7) is M1 ∼Oð1Þ,
while the noise term corresponds to a sum of (K − 1)
stochastic and uncorrelated contributions, each of order
OðN−1Þ, exploiting the central limit theorem it is immediate
to check that the quenched noise due to nonretrieved patterns
can be amplified by a factor

ffiffiffiffi
N

p
still preserving the stability

condition S=N ∼Oð1Þ. We can therefore introduce noisy
patterns yielding to the noisy tensor η with entries

ηρiμ ≡ ξρiμ þ
ffiffiffiffi
K

p
ξ̃ρiμ; ð8Þ

where the information is carried by theBoolean entries of ξρiμ,

while the noise is coded in the real ξ̃ρiμ that are i.i.d. standard
Gaussian variables for i; μ ¼ 1;…; N and ρ ¼ 1;…; K.
Notice that the information encoded by the patterns is
perturbed by adding a stochastic term ξ̃ on ξ [Eq. (8)] rather
than directly on J; the latter choice would have a lower
impact on network capacity and is therefore less challenging.
In analogy with (6) we also define

M̃ρ ≡ 1

N2

XN;N

i;μ¼1

ξ̃ρiμσiτμ: ð9Þ

Replacing the Boolean tensor (2) in Eq. (5) with the noisy
tensor (8) and exploiting the definitions (6) and (9), we get
HDAM ¼ −ðN=2ÞPρðMρ þ

ffiffiffiffi
K

p
M̃ρÞ2. Then, in the limit of

large N, splitting the signal and the noise contributions, the
Boltzmann factor in Eq. (4) reads as [21]

exp ð−βHRSMÞ ∼
N→∞

exp

�
β
N
2
M2

1 þ β
αN2

2

XK
ρ≥2

M̃2
ρ

�
:

Let us now handle the two terms appearing as argument of
the exponential in the rhs: exploiting the redundancy ξ1iμ ¼
ξ1i ξ

1
μ and callingmσ andmτ the Mattis magnetization related

to the visible layer σ and to the mirror layer τ respectively,
we get M1 ¼ ð½1=N�Pi ξ

1
i σiÞð½1=N�Pμ ξ

1
μτμÞ≡mσmτ, in

such a way that βNM2
1=2 ¼ βNm2

σm2
τ=2; by performing a

Hubbard-Stratonovich transformation, the quenched noise
given by the nonretrieved K − 1 patterns is linearized asffiffiffiffiffiffi
αβ

p P
i;μ;ρ≥2 ξ̃

ρ
iμσiτμzρ=N. After these passages one can

address the evaluation of the intensive quenched pressure
of the model, defined as,

Aðα; βÞ≡ lim
N→∞

1

N
Eη ln

X
σ;τ

Z YK
ρ¼1

Dzρ expð−βHRSMÞ;

exploiting Guerra’s interpolation techniques [10,29]. Under
the replica symmetric (RS) ansatz, the quenched pressure
reads as [21]

ARS ¼ 2 ln2þ α2β2

2
pð2qr− r− qÞ− 3

2
βm̄2

σm̄2
τ

þ
Z

Dx ln cosh ðαβx ffiffiffiffiffiffi
rp

p þ βm̄σm̄2
τÞ

þ
Z

Dx ln cosh ðαβx ffiffiffiffiffiffi
qp

p þ βm̄2
σm̄τÞ

−
α

2
ln½1− αβð1− qrÞ� þ α2β

2

qr
1− αβð1− qrÞ ; ð10Þ
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FIG. 2. Phase diagram for the DAM with (P ¼ 4)-wise inter-
actions among the N neurons and a load K ¼ αN, as a function of
the capacity α and of the noise level 1=β. This diagram was
obtained by solving the self-consistent Eqs. (11)–(15) and by
identifying the retrieval phase as the region where each neural
configuration corresponding to a stored pattern is a maximum of
the pressure—either global (R1), or local (R2)—the spin-glass
(SG) phase as the region where retrieval capabilities are lost due
to prevailing “slow noise” α, and the ergodic (E) phase as the
region where retrieval capabilities are lost due to prevailing “fast
noise” 1=β [21]. This diagram was found for a noise regime
Oð ffiffiffiffi

N
p Þ [see Eq. (8)], where the standard Hopfield would fail.
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where m̄σ and m̄τ are the RS values of the Mattis magne-
tizations, while q, p, and r are the RS values for the two-
replica overlaps for each layer (visible, hidden, and mirror,
respectively). Its extremization returns the following self-
consistency equations for the order parameters

q ¼
Z

Dxtanh2ðαβ ffiffiffiffiffiffi
rp

p
xþ βm̄σm̄2

τÞ; ð11Þ

r ¼
Z

Dx tanh2 ðαβ ffiffiffiffiffiffi
qp

p
xþ βm̄2

σm̄τÞ; ð12Þ

p ¼ αqr
½1 − αβð1 − qrÞ�2 ; ð13Þ

m̄σ ¼
Z

Dx tanh ðαβ ffiffiffiffiffiffi
rp

p
xþ βm̄σm̄2

τÞ; ð14Þ

m̄τ ¼
Z

Dx tanh ðαβ ffiffiffiffiffiffi
qp

p
xþ βm̄2

σm̄τÞ; ð15Þ

whose solution paints the phase diagram in Fig. 2. There
emerge four regions corresponding to qualitatively different
solutions: an ergodic (E) one, where the order parameters are
all vanishing, a spin-glass (SG)one,where themagnetizations
are zero but the overlaps are positive, and two retrieval (R1,
R2) regions, where the magnetization of the retrieved pattern
is non vanishing (in R2 this solution is only metastable) [21].
The theory is also corroborated via Monte Carlo sim-

ulations; a sample of this analysis is shown in Fig. 3, while
more extensive discussions can be found in [21].
To summarize, we considered a Sejnowski machine

equipped with two visible layers and we showed that it
can perform pattern-redundant representation via a suitable
generalization of the standard contrastive divergence.
Further, we proved that this machine has a dual represen-
tation in terms of a bipartite DAM in such a way that the

features learned by the former correspond to the patterns
stored in the latter and, whatever the learning mode
(adaptive vs Hebbian), in the operational mode these
networks achieve pattern recognition always in a
Hebbian fashion. We studied these nets via statistical
mechanical tools obtaining (under the RS ansatz) a phase
diagram, where their remarkable capabilities shine. In
particular, there exists a region in the parameter space
where they can retrieve patterns although these are (appa-
rently) overpowered by the noise. This may contribute to
explain the high-rate ability of deep or dense networks in
pattern recognition, as empirically evidenced in a variety of
tasks. Indeed, at finite volumes (as standard dealing with
real datasets), it is not obvious which regime of operation
the network is actually set at: to see this one can notice that
at finite N and K one has only access to the ratio
αðK;NÞ ¼ K=N, which can possibly be compatible with
different scalings (e.g., K ¼ α1NP−1 or K ¼ α2N). Hence,
we speculate that such impressive detection skills emerge
when these nets are away from the memory storage
saturation. Further, we have shown by a pure statistical
mechanical perspective, how pattern recognition power and
memory storage are strongly related.
For the sake of completeness, we report that also in the

purely engineering counterpart, pattern redundancy is
exploited to cope with high noise rate (e.g., in white
Gaussian additive channels [30,31]). In particular, our
approach is close to the so called channel access method
in telecommunications, namely a setup where more than
two terminals connected to the same transmission medium
are allowed to share its capacity.
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