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The attractive tail of the intermolecular interaction affects very weakly the structural properties of
liquids, while it affects dramatically their dynamical ones. Via the numerical simulations of model systems
not prone to crystallization, both in three and in two spatial dimensions, here we demonstrate that the
nonperturbative dynamical effects of the attractive forces are tantamount to a rescaling of the activation
energy by the glass transition temperature Tg: systems only differing in their attractive interaction have the
same structural and dynamical properties if compared at the same value of T=Tg.
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According to the “van der Waals picture” the physics of
liquids is dominated by the harsh and short-ranged repul-
sive forces between the particles, the weaker and longer
ranged attractive forces only providing a homogeneous
cohesive background. This suggests the possibility of
treating the attractive forces perturbatively, as first proposed
by Weeks, Chandler, and Andersen [1,2]. They indeed
considered that, due the smooth spatial dependence of the
attractive forces and the roughly homogeneous liquid
structure, the sum of attractive forces experienced by a
particle may be negligible with respect to the sum of the
attractive ones. Hence “the arrangements and motions of
molecules… are determined primarily by the local packing
and steric effects produced by the repulsive forces” [2].
Berthier and Tarjus [3,4] investigated the validity of this
scenario focusing on the Kob-Andersen binary Lennard-
Jones (KA-LJ) model [5], a prototypical glass former. To
asses the relevance of the attractive forces, they compared
this model with its Weeks-Chandler-Andersen variant (KA-
WCA), where particles interact via the purely repulsive
potential obtained by truncating the LJ potential at its
minimum. Their results demonstrated that the attractive
forces have a nonperturbative effect on the relaxation
dynamics, as the attractive forces greatly slow down the
dynamics at low temperatures. Subsequent works have
clarified that the difference between attractive and purely
repulsive interactions could be attributed to the small
structural differences induced by the attractive forces.
These differences have been first identified in higher order
structural correlations [6–9] and more recently, investigat-
ing two-point correlation functions via machine learning
techniques [10]. Relating the relaxation time to the con-
figurational entropy through the Adam-Gibbs relation [11],
the effect of the different pair correlations on the dynamics
has been rationalized considering their different contribu-
tion to the entropy [12–14]. It has also been demonstrated
that it is possible to design a purely-repulsive potential that

seemingly generates many structural and dynamical proper-
ties of LJ liquids [15–17].
All of these results indicate that in molecular liquids the

attractive forces do not have a perturbative effect as
originally speculated. The open question ahead is therefore
quantitatively rationalizing their nonperturbative influence.
In this Letter, we consider this question via the numerical
investigation of the relaxation dynamics of a family of
potentials characterized by the same repulsive part but
different attractive tails. These potentials have been pre-
viously introduced to investigate the influence of the
attractive interaction on the mechanical features of amor-
phous solids [18]. Our results demonstrate that attractive
forces do not qualitatively change the features of the
dynamics in the supercooled regime, but only rescale the
typical temperature scale: the structural and the dynamical
properties of the different potentials coincide if their temper-
ature is measured in units of their respective glass transition
temperatures, Tg. The nonperturbative role of the attractive
forces is thus simply rationalized, to a very good approxi-
mation, via a simple rescaling of the typical energy scale.
Model.—We investigate the role of the attractive inter-

actions via the numerical simulations of an interaction
potential with a repulsive and an attractive part Uðrij; λÞ ¼
UrðrijÞ þUaðrij; λÞ, the latter depending on a cutoff [18].
The repulsive component acts for rij ≤ rmin

ij ¼ 21=6σij, and
is given by a LJ potential, UrðrijÞ ¼ 4ϵij½ðσij=rijÞ12 −
ðσij=rijÞ6�. Conversely, the attractive component only acts

for rmin
ij ≤ rij ≤ rðcÞij , and is given by

Uaðrij;λÞ¼ ϵij
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Here the six parameters a0, a1, and c2l are set such that
UðrijÞ and its first two derivatives are continuous at the
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minimum, rmin
ij , and at the cutoff, rðcÞij , where the potential

vanishes. As the cutoff is varied, the repulsive part of the
potential remains unchanged, while the width of the
attractive tail changes. We define the width of the attractive
tail as wðrðcÞÞ ¼ r10% − rmin, whereUðr10%Þ ¼ 0.1UðrminÞ,
as illustrated in Fig. 1(a), and compare each potential to the
Lennard-Jones one via the parameter λ ¼ wðrðcÞÞ=wLJ. For
λ ¼ 1 we recover the LJ potential, while in the limit λ → 0
the attraction range vanishes and the potential becomes
discontinuous at its minimum. We have investigated the
above potential for different values of λ. Here we focus on
two extreme values, λ ¼ 0.08 and λ ¼ 0.87, the other
values behaving in an analogous way. Beside investigating
the above potentials, we also consider the WCA one,
UWCA ¼ UrðrijÞ þ cij, where the constant cij is such that
the potential vanishes continuously at rmin

ij . The WCA
potential, which is not formally obtained from our potential
of Eq. (1), would correspond to the λ → ∞ limit. Finally, in
the Supplemental Material [19] we present results sug-
gesting that our results do not depend on the specific form
of the attractive potential.

To prevent crystallization and demixing [20] we study
polydisperse systems with ϵij ¼ ϵ, σij ¼ ðσi þ σjÞ=2, and
σi is drawn from a uniform random distribution in the range
[0.8:1.2]. We use σ, ϵ and the mass of the particles m as
units of length, energy, and mass, respectively. In the
numerical simulations [21], we first equilibrate the system
at the desired value of the temperature T and of the density
ρ via NVT simulations, and then perform production runs in
the NVE ensemble. All measures are taken in thermal
equilibrium, when the system displays no aging behavior.
We focus on three dimensional (3D) systems with N ¼
32 000 particles, but we will also show that our main result
remains valid in two spatial dimensions (2D). We consider
two values of the density, ρ ¼ 1.07, and ρ ¼ 1.15. We
remark that at the smallest temperature which we inves-
tigate the coexisting density for λ ¼ 0.87 is ρcoex ≃ 0.97.
Hence, we are investigating density values close to the
coexistence region, where the role of attractive forces is
expected to be of great relevance.
Results.—We measure the structural relaxation time

τα from the decay of the self-intermediate scattering
function Fsðq; tÞ ¼ ð1=NÞhPN

j¼1 e
iq½rjðtÞ−rjð0Þ�i, with q ≃ 7

corresponding to the first peak position of the static
structure factor. Specifically, we extract τα by fitting Fs

curves with exponential function ∼e−t=τα in the interval of
Fs∈ ½e−1�0.1�. Figure 1(b) illustrates the dependence of
the relaxation time on the inverse temperature for λ ¼ 0.08
and λ ¼ 0.87, and for the WCA model. We have checked
that λ ¼ 0.87 is already in the λ → 1 limit in the considered
temperature range, meaning that the system behaves as
a LJ ones. In all cases, the relaxation time exhibits a
crossover from an Arrhenius to a super-Arrhenius temper-
ature dependence, as in fragile glass formers. At low
temperature, the relaxation time of the WCA, λ ¼ ∞, is
smaller than that observed at λ ¼ 0.87, which is smaller
than that at λ ¼ 0.08. Hence, as the attraction range
decreases, the dynamics slows down. This confirms pre-
vious results [3,10,22]. We have also checked [6–8,10,12]
that the differences in the relaxation dynamics occur
together with structural differences, we quantify comparing
two-point correlation functions through the parameter
Δ ¼ R

∞
0 jgλðr;TÞ − gWCAðr;TÞjdr [22,23]. Panel (c) dem-

onstrates that, as the temperature decreases, the structure
of attractive potentials increasingly deviates from that of the
WCA, and that the deviation becomes larger with the
shorter range of the attractive interaction.
This observed behavior is consistent with the failure of

the perturbation picture of liquids [1], according to which
the sum of the attractive forces experienced by a particle
should be small and negligible with respect to the sum of
the repulsive forces experienced by the same particle.
To explicitly verify that this assumption fails we evaluate
the average net attractive force acting on the particles

fa ¼ hjf ðiÞa ji, where f ðiÞa ¼ P
j f ijðrijÞθðrij − rmin

ij Þ is the
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FIG. 1. (a) The interaction potentials used in this study, and
(b) dependence of their relaxation time on the inverse temper-
ature. In (b), dashed lines are Arrhenius fits describing the high-
temperature relaxation. (c) Accumulated deviation between two
radial distribution functions gðrÞ defined as Δ ¼ R∞

0 Δðr;TÞdr
where Δðr;TÞ ¼ jgλðr;TÞ − gWCAðr;TÞj. (d) the ratio between
the net attractive and the net repulsive force acting on a particle,
averaged over all particles, increases upon supercooling.
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net attractive force acting on particle i, θð·Þ being the
Heaviside step function; similarly, we evaluate the
average value of the magnitude of the net repulsive force
acting on the particles, fr. For the attractive forces to act
as a perturbation, one would need fa=fr ≪ 1. Figure 1(d)
illustrates that fa=fr increases as the temperature
decreases, and that it also decreases as the attraction range
increases. This is qualitatively as expected. At λ ¼ 0.87 the
attractive forces may still account for 10% of the repulsive
ones: they are not small enough to be negligible. Notice
that, regardless of the attraction range, in the T → 0 limit
fa=fr → 1, as the system reaches a state of mechanical
equilibrium.
Having established that attractive forces play an impor-

tant role in the relaxation dynamics, we now consider if
they change the dynamics quantitatively, or also qualita-
tively. To this end, we investigate the Angell’s plot [24] by
operatively defining the glass transition temperature Tg as
that at which the relaxation time reaches τα ¼ 104. We find
Tg ¼ 0.61 for the WCAmodel, Tg ¼ 0.76 for λ ¼ 0.87 and
Tg ¼ 0.9 for λ ¼ 0.08. Figure 2 shows that when plotted
versus Tg=T the data of Fig. 1(b) collapse on a same master
curve, at low temperature. Implying that all systems have
the same fragility. Notice that for dimensional consistency
in Fig. 2 we have also rescaled the relaxation time by
τ0 ¼ 1=

ffiffiffiffi
T

p
. We have verified that the collapse is robust and

not affected by the definition of Tg. The inset of Fig. 1(b)
shows that qualitatively analogous results hold in two
dimensions. We have therefore reached the first important
message of our investigation: the nonperturbative effect of
the attractive forces on the dynamics of supercooled liquids
can be taken into account via a simple rescaling of the

activation energy, for the model systems we have consid-
ered. Note that the data collapse also holds to a good
approximation at high temperature, where we observe an
Arrhenius relaxation, τα ∝ τ0 exp½ðΔEAÞ=T�. This suggests
Tg ∝ ΔEA.
This surprising result is related to a generalized iso-

morphysm induced by the attractive forces. We remind
our colleagues [25,26] that two state points of a same
systems, having different densities and temperatures, are
isomorph if they can be scaled into each other, meaning that
their physical properties are identical when measured as a
function of a thermodynamic parameter combining temper-
ature and density. This exactly occurs in inverse power-law
liquids, UðrÞ ∝ r−n, whose physical properties are fixed by
ρn=d=T in d spatial dimensions. To compare systems with
different interaction potentials, but same density, here we
postulate Tg to be their relevant energy scale, and write

the interaction energy as Uðrij; λÞ ¼ TðλÞ
g uðrÞ with uðrÞ a

universal function. If this is so, then the statistical weight of
configuration r,

exp

�
−
UðλÞðrÞ

T

�
¼ exp

�
−

uðrÞ
T=TðλÞ

g

�
; ð2Þ

does not depend on λ if the temperature is measured in units

of the glass transition temperature TðλÞ
g . We validate this

prediction in Fig. 3. In Figs. 3(a) and 3(b) we compare the
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FIG. 2. The main panel illustrates the dependence of logðτα=τ0Þ
on Tg=T for different potentials, as indicated. Full symbols are
for ρ ¼ 1.07, open ones for ρ ¼ 1.15. A denotes a set of points
(λ ¼ 0.08, T ¼ 0.85, ρ ¼ 1.07) and (λ ¼ 0.87, T ¼ 0.72,
ρ ¼ 1.07) which have nearly same τα and, similarly, B denotes
(WCA, T ¼ 0.6, ρ ¼ 1.07) and (λ ¼ 0.87, T ¼ 0.75, ρ ¼ 1.07).
The inset illustrates analogous two-dimensional results.
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FIG. 3. Panels (a) and (b) illustrate the radial distribution function
for two different values of λ, and the radial dependence of
their difference, i.e., ΔðrÞ ¼ gλð1Þ ðrÞ − gλð2Þ ðrÞ, for T=Tg ≃ 0.94.
Panel (c) compares the van Hove distribution function of these
systems, at times t=τ ¼ 10, 103, 104. The same quantities are
illustrated in panels (d)–(f) for theWCApotential and for λ ¼ 0.87,
at T=Tg ≃ 0.98.
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radial distribution functions at T=Tg ≃ 0.94, for λ ¼ 0.08
and λ ¼ 0.87. In Figs. 3(d) and 3(e) we compare at T=Tg ≃
0.98 the WCA potential, and the λ ¼ 0.87 case. We observe
the radial distribution functions to be indistinguishable,
strongly supporting our speculation. This generalized
isomorphism also holds for the dynamical properties of
the system. Figure 2 already clarifies that when the
temperature is measured in units of Tg different potentials
have the same relaxation time. In addition, we show in
Figs. 3(c) and 3(f) that state points at the same T=Tg

essentially share the same van Hove distribution of particle
displacements, at all times. This implies that all of the
dynamical properties of different systems are essentially
identical, if not in the early ballistic regime.
The picture we have discussed so far remains valid

as the density of the system increases. This is not surpris-
ing, as on increasing the density the role of the attractive
forces become less and less relevant, so that the structural
and the dynamical properties of the different systems
converge. This also occurs in KA-LJ systems [22]. We
have also checked that the picture remains true at lower
density, as long as the investigated state points are not
within the liquid-gas coexistence curve, for the attractive
systems.
Previous results have shown that rescaling the temper-

ature via a typical energy is not enough to rationalize the
difference in the relaxation dynamics of the KA-LJ and
of the KA-WCA A-B 80-20 binary mixture [4,27]. In the
KA-WCA model the fragility is density dependent, and in
the KA-LJ it is again density independent [3,4]. On the
contrary, we find the fragility to be potential and density
independent. We investigate the origin of this discrepancy
considering that the KA model differs from our model in
two aspects. First, the KA model uses a binary rather than a
continuous size polydispersity. Secondly, the mixing rule
involves both the energy scales and the particle size, as
ϵAA ¼ ϵ, ϵBB ¼ ϵ=2, ϵAB ¼ 1.5ϵ, σAA ¼ σ, σBB ¼ 0.88σ,
and σAB ¼ 0.8σ [5,28]. To separately check the role of
these two differences we perform simulations of an A-B
80-20 mixture using the energy mixing rule of the KA
model, but a continuous polydispersity with σ uniformly
distributed in the [0.8:1.2] range. We fix the density to ρ ¼
1.07 and consider 80% randomly chosen particles of type
A, the other of type B. Figure 4 shows the characteristic
relaxation time over T for these systems (full symbols).
For comparison, the figure also presents data obtained
without any mixing in energy, ϵAA ¼ ϵBB ¼ ϵAB ¼ ϵ. For
λ ¼ 0.87, energy mixing slightly slows down the dynamics.
Conversely, for the WCA case it substantially speeds
it up. However, as illustrated in the inset of Fig. 4, all
data can be again collapsed by rescaling the temperature
by the glass transition temperature. Hence, also in the
presence of polydispersity in ϵ the attraction does not
lead to qualitative changes in the relaxation dynamics, in
the supercooled regime. We therefore conclude that the

fragility dependence [3,4] of the KA-WCA model is
strongly affected by size bidispersity.
In this respect, we have noticed that the bidispersity of

KA-WCA is actually not enough to prevent its crystal-
lization [29], and that it is actually easier to crystallize the
KA-WCA than the KA-LJ, which also crystallizes [30].
This suggests that the density dependence of the fragility of
the KA-WCA [3,4] might be attributed to the presence
of density and temperature dependent crystalline patches,
or locally preferred structures [6].
We have shown that the nonperturbative effect of the

attractive forces on the dynamics of liquids can be taken
into account via a rescaling of the relaxation energy scale:
systems only differing in their attractive interaction have
the same structural and dynamical properties at the same
value of T=Tg, where Tg is their respective glass transition
temperature. Determining this energy scale from structural
properties of the system remains an open issue. We have
checked that this picture holds in the liquid region of the
phase diagram, also close to the coexistence curve.
An important consequence of our finding is that the

fragility is not affected by the attractive forces, but only by
the repulsive ones which more directly control the local
structure. This supports previous results which have linked
the fragility to the emergence of locally favoured structures
[31–34] and also to the steepness of the repulsive potentials
[35]. While we do have shown in the Supplemental
Material [19] that our results are robust with respect to
changes of the functional form of the attractive tails, we
remain cautious about the generality of the role of attractive
forces in the limit of very small attractive wells, where
a re-entrant glass transition may occur [36]. We finally
remark that it has been shown that the glassy fragility is
correlated with soft elastic modes [37,38]. It is then
interesting to understand how density of states behave
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for such polydisperse glasses where the fragility remains
unaltered by attraction forces. We keep this question for
future investigation.
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