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Quantum critical points often arise in metals perched at the border of an antiferromagnetic order. The
recent observation of singular and dynamically scaling charge conductivity in an antiferromagnetic
quantum critical heavy fermion metal implicates beyond-Landau quantum criticality. Here we study
the charge and spin dynamics of a Kondo destruction quantum critical point (QCP), as realized in an
SU(2)-symmetric Bose-Fermi Kondo model. We find that the critical exponents and scaling functions of
the spin and single-particle responses of the QCP in the SU(2) case are essentially the same as those of the
large-N limit, showing that 1=N corrections are subleading. Building on this insight, we demonstrate that
the charge responses at the Kondo destruction QCP are singular and obey ω=T scaling. This property
persists at the Kondo destruction QCP of the SU(2)-symmetric Kondo lattice model.
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Introduction.—Quantum criticality is of extensive cur-
rent interest to a variety of strongly correlated systems
[1–4]. Within the Landau framework, phases of matter are
differentiated by the spontaneous breaking of global
symmetry and its associated order parameter, and quantum
criticality is described by the fluctuations of the order
parameter. For a continuous transition between antiferro-
magnetic to paramagnetic phases at T ¼ 0, the correspond-
ing singularity is associated with the slow fluctuations of
the staggered magnetization [5].
Antiferromagnetic (AF) heavy fermion metals provide a

prototype setting to elucidate the quantum critical proper-
ties and the associated strange-metal physics. In these
systems, strong correlations manifest themselves through
the development of local moments out of their f electrons.
The local moments interplay with a band of conduction
electrons by an AF Kondo coupling, and interact with each
other via an RKKY coupling. In the process of under-
standing heavy fermion quantum criticality, it has been
emphasized that the Landau framework, in the form of a
spin-density wave (SDW) quantum critical point (QCP)
[5–7], can break down in a fundamental way. The beyond-
Landau physics has been characterized in terms of the
notion of Kondo destruction [8–10]. The distinction of the
Kondo destruction quantum criticality from its SDW
counterpart reflects the amplitude of the Kondo singlet
going to zero as the system approaches the AF QCP from
the paramagnetic phase. Correspondingly, the quasiparticle
weight vanishes at the QCP and the Fermi surface jumps
across the transition.
In the context of critical phenomena, the Kondo destruc-

tion QCP epitomizes the effect of quantum entanglement

on criticality singularity. From the perspective of strongly
correlated electrons, it corresponds to a partial Mott
transition, i.e., the localization of the 4f electrons. Such
an electronic localization-delocalization transition links
quantum critical heavy fermion metals to other strongly
correlated systems. For instance, in the cuprate super-
conductors near optimal hole doping, Hall measurements
implicate an electron localization-delocalization transition
[11]. In an organic superconductor, such measurements
have suggested a similarly rapid change in the carrier
density [12]. Finally, in the twisted bilayer graphene,
quantum oscillation measurements indicate a small
Fermi surface when the system is doped away from the
half-filled correlated insulator [13].
In quantum critical heavy fermion metals, there is

extensive experimental evidence for the Fermi surface
jump [14–16] as well as the emerging Kondo destruction
energy scale [14,17]. One of the early experimental clues
for anomalous heavy fermion quantum criticality came
from the observation of ω=T scaling together with an
anomalous value for the critical exponent in the spin
dynamics [18]. The Kondo destruction quantum criticality
has provided a natural understanding of such singular
dynamical scaling in the critical spin response [8,19].
Recently, terahertz spectroscopy measurements in a

quantum critical heavy fermion metal have discovered a
charge response that is singular and satisfies ω=T scaling
[20]. This is inconsistent with an SDW QCP, where only
the response of antiferromagnetic order parameter should
be singular and the charge correlations are expected to be
smooth. A critical destruction of the Kondo effect, however,
involves the localization delocalization of the f electrons at
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the QCP. Thus, the charge degrees of freedom (d.o.f.) are an
integral part of the quantum criticality leading to the
suggestion of a singular response in the charge channel.
Indications of a singular charge response have appeared in a
dynamical large-N study (see below for the definition of N)
for a Kondo destruction QCP of the Bose-Fermi Kondo
model (BFKM) and in related settings [21–24], with the
BFKM being associated with the Kondo lattice model
within the approach of extended dynamical mean field
theory (EDMFT). In light of the recent experimental
development, theoretical studies at the physical N ¼ 2
case are called for.
In this Letter, we demonstrate for the first time that the

charge response of the Kondo destruction QCP is singular
and has dynamical ω=T scaling in the physical N ¼ 2 case.
Our result is facilitated by analyzing the BFKM at both
N ¼ 2 and a dynamical large-N limit, which shows that
1=N corrections to the scaling quantities are subleading but
not dangerously irrelevant. Based on this insight, we carry
out calculations on both the BFKM and the Kondo lattice
model. Our results provide the theoretical basis to under-
stand the striking recent measurement of singular charge
response at an antiferromagnetic heavy fermion QCP [20].
BFKM with SU(2) symmetry.—We will study the quan-

tum critical properties of the spin rotationally invariant
BFKM [25–28] and related Bose-Fermi Anderson model
(BFAM), compare the results determined for the SU(2)-
invariant case (N ¼ 2) with those obtained in the dynamical
large-N limit. For the SU(2) case, we will study the BFAM
defined by the following Hamiltonian:

HBFA ¼
X

σ

ϵdd
†
σdσ þ Un↑n↓

þ
X

pσ

ðVd†σcpσ þ H:c:Þ þ
X

pσ

ϵpc
†
pσcpσ

þ g
X

p

Sd ·Φþ
X

p

wpΦ
†
p ·Φp: ð1Þ

Here, strongly correlated d electrons, with the Hubbard
interaction U defined in terms of nσ ¼ d†σdσ and in the
presence of a particle-hole symmetry, ϵd ¼ −U=2, hybrid-
ize with the conduction c electrons with an amplitude V.
For the interactions we consider, the hybridization amounts
to a Kondo coupling of the d electron spin, Sd ¼ d†στσσ0dσ0 ,
with τσσ0 being the three component Pauli matrices, to the
fermionic c bath. Simultaneously, the d-electron spin is
coupled to a vector Φ-bosonic bath; we have defined
Φ ¼ P

pðΦp þΦ†
−pÞ. We assume a flat fermionic density

of states

ρfðϵÞ ¼
X

p

δðϵ − ϵpÞ ¼ ρ0ΘðD − ϵÞΘðDþ ϵÞ; ð2Þ

where Θ is the Heaviside function. This defines a hybridi-
zation function ΓðϵÞ ¼ Γ ¼ πρ0V2 for ϵ ∈ ½−D;D�. We

choose D ¼ 1 as the energy unit. For the bosonic bath, we
consider a subohmic spectrum (s < 1)

ρbðωÞ ¼
X

p

δðω − ωpÞ ¼ K0ω
se−ω=ΛΘðωÞ; ð3Þ

where Λ is a cutoff frequency. The model is studied using a
continuous-time quantum Monte Carlo (CT-QMC) method
developed in Ref. [29] (see also Refs. [30–34]).
BFKM in dynamical large-N limit.—The BFKM in

the dynamical large-N limit is defined in terms of the
Hamiltonian:

HBFK ¼ ðJ=NÞ
X

α

S · sα þ
X

p;α;σ

ϵpc
†
pασcpασ

þ ðg= ffiffiffiffi
N

p ÞS ·Φþ
X

p

wpΦ
†
p ·Φp: ð4Þ

As in the SU(2) case, a local moment S is coupled to a
fermionic and a vector bosonic bath, cpασ and Φp, respec-
tively. The spin symmetry is SU(N), with σ ¼ 1;…; N, and
the channel symmetry is SUðκNÞ, with α ¼ 1;…; κN
(Ref. [35,36]). Here,Φ hasN2 − 1 components. The density
of states is likewise given by Eqs. (2) and (3). The bare
bath Green’s functions are G0 ¼ −hTτcσαðτÞc†σαð0Þi0 and
GΦ ¼ hTτΦðτÞΦ†ð0Þi0.
We use a fermionic spinon representation, Sσσ0 ¼

f†σfσ0 − δσ;σ0=2, enforcing the constraint of the Hilbert
space

P
N
σ¼1 f

†
σfσ ¼ N=2 by a Lagrange multiplier iμ.

The conduction electrons are in the fundamental represen-
tation of the SUðNÞ × SUðκNÞ group. A dynamical
field BαðτÞ is used to decouple the Kondo coupling,
ðJ=NÞPσσ0 ðf†σfσ0 − δσ;σ0=2Þc†ασ0cασ , leading to a

B†
α
P

σ c
†
ασfσ=

ffiffiffiffi
N

p
interaction. The B field is charge carry-

ing, given that the spinon field f is charge neutral.
Taking the large-N limit with κ being kept fixed leads to

the following saddle point equations:

G−1
B ðiωnÞ ¼ 1=J − ΣBðiωnÞ; ΣBðτÞ ¼ −G0ðτÞGfð−τÞ;

G−1
f ðiωnÞ ¼ iωn − λ − ΣfðiωnÞ;
ΣfðτÞ ¼ κG0ðτÞGBðτÞ þ g2GfðτÞGΦðτÞ; ð5Þ

which are supplemented by the following constraint:

Gfðτ ¼ 0−Þ ¼ ð1=βÞ
X

iωn

GfðiωnÞeiωn0
þ ¼ 1=2: ð6Þ

These equations are solved on the real frequency axis. For
definiteness, we will fix κ ¼ 1=2.
Critical properties—large-N limit vs SU(2).—In the

large-N limit, a QCP separates the strong-coupling
Kondo phase from a Kondo destruction critical phase. In
the SU(2) model, for the value of s we focus on, the Kondo
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destruction phase also corresponds to a critical phase [29].
Comparing the critical properties of the dynamical large-N
limit with the SU(2) model allows us to assess the degree to
which 1=N corrections modify the leading quantum critical
singularities.
We first consider the local spin susceptibility, χ, at the

QCP and in the Kondo destruction phase. In the dynamical
large-N limit,

χðτÞ ¼ −GfðτÞGfð−τÞ: ð7Þ

In the SU(2) case, χðτÞ is directly calculated from the CT-
QMC procedure. The result for the dynamical large-N
calculations for s ¼ 0.6 (i.e., ϵ ¼ 1 − s ¼ 0.4) is shown in
Fig. 1(a). We find that χ as a function of the imaginary time,
τ, collapses in terms of πT= sinðπτTÞ, where T is the
temperature, with a power-law exponent η that is less than
1. This implies a singular spin response: The static local
spin susceptibility diverges in the T → 0 limit, and so
does the T ¼ 0 local spin susceptibility as ω → 0; both
divergencies have the power-law exponent of 1 − η. The
exponent η is numerically fit to be 0.41. This value is in
excellent agreement with the analytical result, η ¼ ϵ ¼ 0.4,
that can be extracted from the saddle point Eqs. (5) and (6)
in the zero-temperature limit [21].
As a comparison, we show in Fig. 1(b) the CT-QMC

result for χðτÞ at the QCP of the SU(2) BFAM, again for
s ¼ 0.6. Unlike the large-N limit where the real-frequency
analysis is carried out over many (more than ten) decades,

here the dynamical range is more limited. Still, by using the
algorithm recently developed in Ref. [29], we are able to
reach low-enough temperatures and a sufficiently large
dynamical range in τ to determine the scaling properties in
the quantum critical regime. We see from Fig. 1(b) that the
scaling function is also a power-law of πT= sinðπτTÞ. The
fitted exponent is 0.38, which is quite close to the large-N
result (0.41 as calculated and 0.4 as expected). We attribute
the difference to the subleading corrections that are
amplified in the CT-QMC calculation, given the narrower
scaling range being accessed.
We now turn to a parallel study of the d-electron Green’s

function GðτÞ. In the large-N limit, it is determined as
follows:

GðτÞ ¼ GfðτÞGBð−τÞ: ð8Þ

For the SU(2) case,GðτÞ is again directly calculated from the
CT-QMCprocedure. The results for theQCP is shown for the
large-N limit in Fig. 1(c), with the exponent being 0.99, very
close to the value analytically expected, which is 1. In
addition, for the SU(2) case shown in Fig. 1(d), within
numerical accuracy, both the critical exponent and the scaling
functions are essentially the same as the large-N limit.
Critical charge and spin responses and ω=T scaling.—

The above calculations and comparisons lead to an impor-
tant new insight. For the Kondo destruction QCP, the
leading critical singularities determined in the dynamical
large-N limit apply to finite N including N ¼ 2. This
implies that, while the 1=N corrections modify the location
of the quantum critical point, they preserve its Kondo-
destruction nature and, equally important, make only
subleading contributions to the critical singularities.
Analyzing the Feynman diagrams shows that the processes
at the 1=N and higher orders are irrelevant [35]. In addition,
the 1=N corrections cannot be dangerously irrelevant: given
that the susceptibilities at the large-N limit satisfy ω=T
scaling (see below), the subleading corrections will pre-
serve the leading singularities as a function of not only the
frequency but also the temperature. This insight leads to a

(a) (b)

(c) (d)

FIG. 1. Local spin susceptibility χðτÞ at the QCP of (a) the
dynamical large-N limit (purple dashed line represents the
analytically obtained leading T ¼ 0 behavior) and (b) the SU(2)
case; and electron Green’s function GðτÞ at the QCP of (c) the
dynamical large-N limit and (d) the SU(2) case. In (a), (c), the
temperature T is measured in D. In (b), (d), β ¼ 1=T.

(a) (b)

FIG. 2. Singular charge response of the B field calculated in the
dynamical large-N limit (a) and extracted in the SU(2) case
(b) obtained at the QCP. In (a), the temperature T is in units of D.
In (b), β ¼ 1=T.
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remarkable simplification, because it implies that we can
use the results determined in the dynamical large-N limit to
gain an understanding about the critical properties at
realistic Kondo destruction QCPs at finite N.
We start from the response of the charge-carrying B field,

which is expected to be singular [21]. In Fig. 2(a), we show
that it too is a power law of πT= sinðπτTÞ, with a critical
exponent being very close to the value determined ana-
lytically for the leading singularity, i.e., 0.8 (which corre-
sponds to 1 − ϵ=2).
The lack of 1=N corrections to the leading critical

singularities at the Kondo destruction QCP suggests that
the structure of Eqs. (7) and (8) is still valid at finite N. The
form of the scaling functions simplifies these equations into
χðτÞ ¼ ½GfðτÞ�2 and GðτÞ ¼ GfðτÞGBðτÞ [for τ ∈ ð0; βÞ].
We therefore define

G0
BðτÞ ¼

GðτÞffiffiffiffiffiffiffiffiffi
χðτÞp ð9Þ

as ameasure of the singular correlator of the charge-carrying
B field. The τ-dependence of G0

B from our CT-QMC
calculation of the SU(2) BFAM is presented in Fig. 2(b).
Both the critical exponent and the scaling function are,
within the numerical uncertainty, the same as for the large-N
result. This particular form of scaling function in the τ
dependence, with its power-law exponent being less than 1,
implies a singular dependence on ω and T with an ω=T
scaling.
Thus, we have established that the Kondo destruction

QCP displays a singular response in both charge and spin
channels. The real-frequency dependences of the spectral
functions of both the charge-carrying B field and the spin S
are shown to collapse in ω=T in Figs. 3(a) and 3(b). Each
quantity satisfies ω=T scaling over a dynamical range of
more than 15 decades.
Kondo lattice model.—Since the lattice model is more

relevant to the real materials, we study the SU(2)-
symmetric Kondo lattice model. The model itself is stan-
dard, as is the EDMFTapproach [19]. However, systematic

calculations for the SU(2)-symmetric case has only become
possible recently with the advent of the SU(2) CT-QMC
method [29]. Within EDMFT the lattice model is described
by the BFKM involving self-consistently determined bath.
In the lattice model, we numerically identity a Kondo

destruction QCP, which separates a paramagnetic Kondo
screened phase from an antiferromagneticKondodestruction
phase [37].We then investigate the charge responseG0

B at the
QCP.As shown in Fig. 4, we findG0

B to collapse as a function
of πT= sinðπτTÞ. The critical exponent is about 0.5 which
corresponds to the s ∼ 0 case in the BFKM. This form of
charge response is critical and satisfies ω=T scaling.
Discussion and conclusion.—Importantly, in both the

Bose-Fermi Kondo model and Kondo lattice model, only
spin appears in the (strongly correlated) local d.o.f. At the
corresponding Kondo destruction QCP, we find that the
charge response not only is singular but also satisfies ω=T
scaling. The development of a singular charge response in
such a model is surprising, because the only microscopic
charge d.o.f. in the Hamiltonian are associated with the
noninteracting conduction electrons; only spins are
involved in any of the interaction terms. It demonstrates
the power of quantum (Kondo) entanglement in strongly
correlated metallic settings. More generally, our results
capture the aspects of quantum criticality that are unique to
strongly correlated metals, namely the quantum entwining
of the charge and spin d.o.f.
Our work provides the theoretical basis for the under-

standing of the surprising experimental observation in
Ref. [20], where a singular charge response with ω=T
scaling is found at an antiferromagnetic QCP. Finally,
because Kondo destruction represents a partial-Mott tran-
sition, our work suggests that probing the singularities of
both charge and spin responses represents a fruitful means
of elucidating strange metals near an electronic localiza-
tion, such as the cuprate high temperature superconductors
and organic charge transfer salts.
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FIG. 3. ω=T scaling at the QCP. (a) The charge response,
showing the spectral function of the B field and (b) the spin
response, showing the spectral function of S, both in the dynamical
large-N limit. The temperature T and ω are in units of D. FIG. 4. Singular charge response of the B field calculated in the

lattice model at the Kondo destruction QCP.
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