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Experiments and simulations show that when an initially defect-free rigid crystal is subjected to
deformation at a constant rate, irreversible plastic flow commences at the so-called yield point. The yield
point is a weak function of the deformation rate, which is usually expressed as a power law with an
extremely small nonuniversal exponent. We reanalyze a representative set of published data on nanometer
sized, mostly defect-free Cu, Ni, and Au crystals in light of a recently proposed theory of yielding based on
nucleation of stable stress-free regions inside the metastable rigid solid. The single relation derived here,
which is not a power law, explains data covering 15 orders of magnitude in timescales.
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The phenomenon of yielding is possibly the most
conspicuous, and therefore well studied, aspect of the
mechanical response of materials upon external loading
[1–4]. In a typical experiment, a sample of material is
deformed at a constant rate and the point at which the stress
suddenly drops, in a marked departure from reversible
elastic behavior, is identified with the yield point [3]. No
theory, starting from rigorous thermodynamic principles
(e.g., shape independence of equilibrium free energy
densities) [5], has been derived that predicts the yield point
of a real solid. Detailed phenomenological models, on the
other hand, have been extremely useful for this purpose
[1,2]. All existing work on irreversible mechanical proc-
esses in crystalline solids ultimately connects to the static
and dynamic properties of lattice defects viz. dislocations
[6]. These are known to interact with each other as well as
with impurities, grain boundaries, pinning sites, etc. [1,2].
However, a quantitative understanding of the collective
behavior of large accumulations of dislocations, readily
observed in large scale atomistic computer simulations [7]
and expected to play a key role in yielding, remains elusive.
Various models, such as the thermodynamic dislocation
theory [8], based on depinning [9] or unjamming [10] of
dislocations, have been proposed. Yielding is also viewed as
a dynamical critical phenomenon [4,11]. Indeed, scale-free
avalanches and intermittent phenomenon have been
observed to accompany yielding [12]. A nonzero initial
dislocation concentration is indispensable for most known
models of yielding.
One of the most intriguing features of yield phenomena

in solids is the history dependence of the yield point. It is
known that the yield point stress σY is a weak function of

the rate _ε by which the solid is deformed prior to the
commencement of irreversibility [1,2,13–15]. This relation
is expressed as a phenomenological power law σY ∼ ð_εÞm.
The rather nonuniversal, strain rate sensitivity (SRS)
exponentm varies over a wide range 0.006–0.06 depending
on many factors, such as the nature of the solid and the size
of the specimen, as well as _ε itself. The weak dependence
on _ε and the small value of m may be the reason why this
aspect of yielding has not received the attention that it
deserves. Usually very low (or very high) values of fitted
exponents point to a gap in our understanding of the
underlying physics, hinting that the actual relation may not,
in fact, be a power law.
In this Letter, we show that, at least for one special class

of materials, viz. nearly defect-free crystals, this appre-
hension is true. We derive and test a relation between the
yield strain ε� defined simply as σY=K, where K is the
appropriate elastic modulus, and _ε. This relation is not a
power law and involves instead an essential singularity. It
explains experimental and computer simulation data over a
very wide range of temporal scales.
Our primary idea emerges from the following, somewhat

surprising, fact. Even though σY appears to decrease only
slightly when _ε decreases by a large amount, crystalline
solids are guaranteed to yield at infinitesimal stresses when
deformed at vanishing rates. This conclusion follows from
very general considerations starting with the exact result
that the free energy density of any material, made up of
entities interacting with short ranged forces, cannot depend
on the shape of the boundary [5,16]. This seemingly
pedantic issue can be converted into a quantitative calcu-
lation by showing that, even at vanishingly small strains, an
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initially dislocation-free ideal crystal may nucleate regions,
or bubbles, inside which atoms rearrange to eliminate stress
[17]. These stress-free bubbles are embedded inside the
deformed and stressed solid and bounded by an interface
containing an array of defects. Since the volume energy
contribution of the bubble is always negative, the surface
energy cost from the defect array can be compensated as the
size of the bubble increases. A rigid solid is therefore
always metastable at infinitesimal deformation, although
the relaxation time for bubble nucleation diverges as ε → 0.
Recently, by introducing a fictitious field hX, which

penalizes atomic rearrangements, some of us showed that
further insight may be obtained into this problem [18] (see
also Supplemental Material [19]). One can then analyze the
problem in the full hX − ε plane in the thermodynamic limit
and let hX → 0 at the end. The analysis in Ref. [18]
concludes that there exists an equilibrium first-order
transition between two kinds of ideal crystals, say N
and M in the hX − ε plane with a phase boundary that
extrapolates to ε ¼ 0 at hX ¼ 0 (Fig. 1). The two crystals
have identical symmetry but differ in the way they respond
to deformation. The N crystal produces an internal
restoring stress upon deformation, while the M crystal
undergoes spontaneous rearrangements (e.g., by slipping)
to accommodate the deformation at zero stress. The latent
heat released during the N → M transition is just the
elastic energy stored in the rigid N phase. For any hX ¼ 0
and ε ≠ 0, the N phase is metastable and decays to the
stable M phase by bubble nucleation. Then, for a given ε,
the free energy F of a spherical bubble of M phase, with
radius R and in d dimensions, is given within a linear
approximation by F ¼−1

2
Kε2V1RdþγsS1Rd−1. Here, K is

the elastic modulus and V1¼πðd=2Þ=Γ½ðd=2Þþ1� and S1 ¼
dV1 are the volume and surface area of a d-dimensional
unit sphere, respectively. The equilibrium surface energy γs
is rigorously defined only at coexistence at the first-order
boundary [28]. Extremizing F gives the free energy barrier
ΔF , at a critical value of the radius R ¼ Rc, as

ΔF ¼ ½2ðd − 1Þ�d−1V1γ
d
sK−ðd−1Þε−2ðd−1Þ:

Up to now, we have considered the limit _ε → 0. At a finite
strain rate, the strain depends on time t, i.e., ε ¼ _εt, and
thus the free energy barrier becomes time dependent,
ΔF ¼ ΔF ð_εtÞ. The time τFP, at which the system yields,
can be understood as a (first passage) barrier crossing time
and is associated with a critical strain ε� ¼ _ετFP. Thus, it is
given by [29] τFP ≡ ε�=_ε ¼ τ0 exp½βΔF ðε�Þ�, where β is
the inverse temperature and τ0, the inverse “attempt
frequency,” is a microscopic timescale that is independent
of the barrier. The equation for τ0 is a self-consistency
equation for ε� [30]. Here, βΔF ¼ αðε�Þ−2ðd−1Þ with
α ¼ β½2ðd − 1Þ�d−1V1γ

d
sK−ðd−1Þ, and thus there is an essen-

tial singularity in the dependence of τFP on ε�.
In Ref. [18], a similar equation derived for d ¼ 2

was solved numerically. Here we show that it is possible
to solve the relation analytically and obtain a closed
form expression for ε� as a function of _ε. Defining
x ¼ 2ðd − 1Þαðε�Þ−2ðd−1Þ ¼ 2ðd − 1ÞβΔF , we can write
2ðd−1Þαð_ετ0Þ−2ðd−1Þ ¼xexpðxÞ. This can now be inverted
using the LambertW function [31]: if xex ¼ fðxÞ ¼ y, then
x ¼ f−1ðyÞ ¼ WðyÞ. We thus have finally

ε� ¼
�
W½2ðd − 1Þαð_ετ0Þ−2ðd−1Þ�

2ðd − 1Þα
�−1=½2ðd−1Þ�

: ð1Þ

This is the desired closed form expression for the yield
strain, a smooth and monotonically increasing function of
_ε. Note that there are only two free parameters in Eq. (1):
τ0, a characteristic time and γs (or alternately α), a
characteristic energy. Also, wherever Eq. (1) is valid, τ0
is a constant. In Ref. [18], this was tested for a d ¼ 2
perfect, initially defect-free Lennard-Jones solid [11]. First,
γs was computed at phase coexistence using advanced
Monte Carlo sampling methods for nonzero hX and ε, with
the final hX → 0 limit taken by numerical extrapolation.
Equation (1) was then solved for τ0 using ϵ� obtained from
molecular dynamics (MD) at various _ε. The results showed
that this theory was excellent for βΔF ≳ 1.
By construction, of course, Eq. (1) is thermodynamically

consistent. Can it also explain real experimental data in
d ¼ 3? We check this here by reanalyzing a representative,
though not exhaustive, set of available data [32–44]. The
systems chosen consist of nearly defect-free ductile single
crystals of high purity elemental metals like Cu [32,33] and
Ni [34–37]. We include not only nanopillars [32] and
nanowires [34] but also polycrystalline samples [33,35–37]
with ultrafine grains. Finally, we also reanalyze the results
of large scale MD simulations [38–43] of Au, Cu, and Ni
single crystals within our framework. Ideally, τ0 and γs
should depend only on the material, but in practice factors
like the experimental protocol, e.g., tensile or indentation,
sample size, proximity to free surfaces, prestress, frozen-in

FIG. 1. Schematic phase diagram and N , M phases [18]
corresponding to the d ¼ 2 square lattice, in the hX − ε plane (see
text). The blue line is the first-order phase boundary. The dotted
lines show slip planes in the M phase.
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defects, etc., may be important, causing variation in our fit
parameters.
For all these systems (see Supplemental Material [19] for

a summary), reasonably accurate yield point stresses σY
(under either compressive nanoindentation or tensile loads)
have been reported as a function of _ε. The original authors
of Refs. [32–44] had fitted the data to power laws and
extracted widely different values of the SRS exponent m.
We first digitize the available data and divide the quoted
yield stress σY by the appropriate elastic modulus of the
bulk solid [45] to obtain ε�; this is a dimensionless quantity
that is easier to compare among the different datasets. Fits
to Eq. (1) then give values of α and τ0. The fits are shown in
Figs. 2(a)–2(d); Table I lists the corresponding parameter
values. Equation (1) describes the data rather well, with
some of the experimental data showing, understandably,
more scatter than the MD ones. The fitted values are also
remarkably consistent across the different sets of data, apart
from a few exceptions coming mainly from MD studies of
very small crystals, where finite size effects may be strong.
Most values for τ0 (∼10–100 fs) are in-line with typical
dislocation nucleation times reported earlier [46], as well as

our estimates based on MD simulations [18]. The inter-
facial energy γs (∼10 mJ=m2), computed from α, is also
consistent with that of low energy solid interfaces (e.g.,
stacking faults) [1]. The assumption of homogeneous
nucleation of the stress-free M state, implicit in Eq. (1),
does not affect the qualitative nature of the solution as long
as γs > 0. Systematic variations of γs are difficult to
resolve, however, given the scatter in the original data.
We next look in more detail at the strain rate dependence

of the yield strain predicted by Eq. (1). For small strain rates,
where the argument ofWðyÞ becomes large, one can use the
asymptotic behavior WðyÞ ¼ ðln yÞ − lnðln yÞ þ � � �. The
yield strain thus has a logarithmic rather than power law
dependence on strain rate, which rationalizes the small
effective SRS exponents found previously. Keeping only the
leading term WðyÞ ≈ ln y gives, in d ¼ 3,

αðε�Þ−4 ¼ W½4αð_ετ0Þ−4�=4 ≈ ln½ð4αÞ1=4ð_ετ0Þ−1�: ð2Þ

These relations (solid and dashed lines, respectively) are
plotted along with experimental and simulation results in
Fig. 2(e), showing collapse of datasets covering, altogether,
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FIG. 2. (a),(b) Nonlinear least-square fits (solid lines) of Eq. (1) to experimental results (symbols) on Cu and Ni samples, both single
crystal (SC) and ultrafine grained polycrystalline (PC); see text and Table I for details. (c),(d) Same as (a) and (b) but for MD simulations
of Au, Cu, and Ni. (e) Plot of the data in (a)–(d) using scaled variables [with the same symbols as in (a)–(d)] showing collapse onto the
single master curve (1) (solid black line). (Dashed) Approximate asymptotic form (2). Three experimental datasets with excessive
(>50%) scatter have been omitted. (f) A log-linear plot of Eq. (1) shows that the parameters γs and τ0, obtained fromMD of Cu [43], are
able to predict the results of experiments [33] performed 10−12 times more slowly. The light blue band on the solid line shows the
uncertainty of our prediction at 95% confidence [from fit (2), see Table I].
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15 orders of magnitude in timescale. Both forms, involving
eitherWðyÞ or lnðyÞ, describe the data extremely well in this
range. Thismakes sense as with τ0 ∼ 30 fs (3 × 10−14 s) our
data lie in the range ð_ετ0Þ−1 ∼ 103–1019 and 4αð_ετ0Þ−4 ∼
104–1068 is indeed typically large. The dimensionless
nucleation barrier βΔF shown on the y axis is considerably
larger for the experiments than for the MD data, where the
barrier heights are at the limit of validity of our theory.
We find it remarkable that Eq. (1) is able to explain such

a large and varied set of data. It is particularly surprising
that even data from ultrafine grained polycrystalline sam-
ples appear to be describable within our picture. In these
systems, there are no dislocations within the grains since
the grain boundaries function as dislocation sinks [1,2].
The entire sample therefore behaves as an ensemble of
nearly independent crystallites.
Defect-free nanometer sized crystals are an important

group of materials that are fast gaining technological
relevance [47]. Our idea, based on a simple, classical
picture of nucleation of stress-free bubbles of M inside N
describes yielding and SRS in these systems. In our picture,
dislocations occur only at the interface between the N and
M phases in order to match the two lattices. Their energy is
subsumed into γs and they are constrained (by definition) to
always move together with the interface, where the local
stress gradient is large [48]. Interfaces exist either at
equilibrium phase coexistence or when the growth of the
M phase is arrested due to kinetic effects. In real situations
(hX ¼ 0), phase coexistence does not occur for nonzero
deformation in the thermodynamic limit [18]. Observed
dislocations are associated, therefore, with nonequilibrium,
or kinetically arrested, configurations. In experiments,
dislocations are far easier to see directly, using electron

microscopy [1], than the stress interface itself. The notion
of a first-order transition has, therefore, escaped attention.
The two parameters of our theory, τ0 and γs (or α), can be

obtained by either fitting yielding data, as is done here, or
from precise, finite size-scaled numerical computations as
in Ref. [18]. We emphasize that our nucleation theory
respects rigorous thermodynamic constraints [5] and at the
same time offers a way to successfully predict “real-world”
experimental data at low strain rates from simulations
performed at much higher rates. We demonstrate this in
Fig. 2(f) by using parameters obtained from the MD results
of Ref. [43] to predict accurately the outcome of the
experiments of Ref. [33], which are separated from the
simulation data by 12 orders of magnitude in time. This is
especially remarkable because an alternative form for ΔF
derived in Ref. [17], without considering a first-order phase
transition, obtains qualitatively similar ε�ð_εÞ but physically
unreasonable yield points [19].
Finally, we believe that the work reported here allows us

to reiterate an interesting perspective on the phenomenon of
yielding. Despite the success of Eq. (1) in explaining such
an extensive set of data, it is not a “theory for everything”.
Yielding in initially defect-free crystals is metastability
controlled, with the large barrier ΔF > kBT between the
distinct N and M phases playing a dominant role in
determining the dynamical response of the solid to external
load. On the other hand, in a solid with a large number of
frozen-in defects, the barrier may be much smaller and may
even vanish, ΔF → 0. There is also a possibility of many
coexisting, relatively shallow minima in F appearing [19].
If barriers disappear, the nucleation route could be replaced
by spinodal decomposition [11], with accompanying criti-
cal-like behavior, avalanches, etc., as is observed [12].

TABLE I. The results of nonlinear least-squares fits of Eq. (1) to τ0 and α. Details of the method, i.e., experimental (Expt.) or MD,
compressive or tensile loading and thematerials considered, are also given alongwith the references (column 1). The values ofK are taken
from [45] (Cu, Ni) and [38] (Au). Except wherementioned otherwise, data correspond to room temperature (27 °C). The interfacial energy
γs is computed from α and K. The last two rows give parameters obtained by fitting the same data using two different methods. Typical
errors fromMD are∼� 20% for τ0 and≲� 10% for γs; error estimates for experimental data are higher due to more scatter and a smaller
range of _ε (see [19]).

Reference Material Method Details K (GPa) τ0 (fs) γs (mJ=m2) α
1
4

[32] Cu Expt.: compressive ≈500 nm diameter single crystal nanopillars 130 39.23 1.826 0.0096
[33] Cu Expt.: tensile Polycrystal with ≈30 nm grains 130 37.59 2.801 0.0120
[34] Ni Expt.: tensile ≈200–300 nm diameter nanowires 200 57.55 4.207 0.0131
[35] Ni Expt.: compressive Polycrystal with ≈100–1000 nm grains 200 86.82 3.138 0.0106
[35] Ni Expt.: compressive Polycrystal with ≈40 nm grains 200 34.12 6.040 0.0173
[36] Ni Expt.: compressive Polycrystal with ≈20 nm grains 200 44.42 7.662 0.0206
[37] Ni Expt.: tensile Polycrystal with ≈30 nm grains 200 35.43 1.341 0.0056
[38] Au MD: tensile 5.176 × 5.176 nm nanowire 188 24.05 9.536 0.0251
[39] Au MD: tensile (0°C) 5.65 nm diameter nanowire 188 341.34 18.367 0.0420
[40] Au MD: tensile (-269°C) 1 nm diameter nanowire 188 11.02 4.658 0.0432
[41] Ni MD: tensile 2.53 nm diameter nanowire 200 63.87 35.141 0.0648
[42] Cu MD: tensile 2 × 2 nm nanowire 130 312.84 39.718 0.0880
[43] Cu (1) MD: tensile 9.18 × 9.18 nm nanowire 130 36.59 3.051 0.0128
[43] Cu (2) MD: tensile 9.18 × 9.18 nm nanowire 130 32.97 3.100 0.0129
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In this regime, the yielding process would be instability
controlled [49]. An actual dynamical critical point is also
possible [4,9,10]. The situation in amorphous solids may be
similar; here yielding is known to be preceded by the
percolation of mobile clusters and critical behavior is often
noticed [50]. Our theory cannot predict yielding behavior in
this regime, where one commonly obtains either zero or
even negative values of the SRS exponent m [51]. Is it
possible to develop a theory of yielding with more general
validity, capable of describing both the nucleation and
critical regimes? We hope that our Letter generates enthu-
siasm for pursuing this direction of future research.
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