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Self-similar structures occur naturally and have been employed to engineer exotic physical properties.
We show that acoustic modes of a fractal-like system of tensioned strings can display increased mechanical
quality factors due to the enhancement of dissipation dilution. We describe a realistic resonator design
in which the quality factor of the fundamental mode is enhanced by as much as 2 orders of magnitude
compared to a simple string with the same size and tension. Our findings can open new avenues in force
sensing, cavity quantum optomechanics, and experiments with suspended test masses.
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Introduction.—Self-similar structures can have unusual
physical properties. Coastlines are a famous example—
their length is loosely defined at geographic scale [1]. In the
domain of optics, it was found that self-similar cavities can
support modes with an arbitrarily small mode volume [2] at
a given wavelength. Meanwhile, hierarchical metamaterials
can have improved stiffness per unit mass [3,4] compared
to natural materials. The acoustic vibrations of resonators
are also known to be affected by structural self-similarity
in a nontrivial way, in terms of both the vibrational mode
density [5,6] and damping [7]. The latter can aid the design
of mechanical resonators with low dissipation.
In this Letter, we study mechanical vibrations of systems

of tensioned strings in the shape of self-similar binary trees,
which are clamped at the tips in order to sustain tension [see
Fig. 1(a)]. In such structures, owing to the combination of a
high aspect ratio and static stress, the intrinsic loss-limited
quality factors (Q’s) of flexural modes are controlled by
dissipation dilution [8–10]. The diluted Q of a resonator
mode is related to the material loss angle ϕ (the phase delay
between stress and strain) as [8–12]

Q ¼ DQ=ϕ: ð1Þ

The dissipation dilution coefficient, DQ, can be much
greater than 1 and is quite generally found to be [8–12]

DQ ¼ hWtotali
hWlossyi

¼ 1

αλþ βλ2
: ð2Þ

Here hWtotali is the dynamic elastic energy averaged over
the vibrational period, hWlossyi is its lossy part, and the

parameter λ ¼ h=l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ð12σÞp

depends on the resonator
length, l, thickness in the direction of deformation, h,
Young’s modulus, E, and static stress, σ. The two terms in
the denominator of Eq. (2), which scale differently with λ,
come from the integration of lossy energy over the

resonator’s clamped boundary and the bulk. We call α
and β the boundary and distributed loss coefficients,
respectively.
Self-similar binary trees can be used to realize resonators

with dramatically enhanced quality factors of the funda-
mental mode. When propagating over the hierarchy of
branchings, flexural modes reduce in amplitude, which can
suppress the boundary loss coefficient, α, and make the
modes “soft clamped” [13]. To date, the only known
example of soft-clamped modes are modes localized
around defects in stressed phononic crystals (PnCs)
[13,14]. This method, in combination with engineering
of stress concentration, resulted in a demonstration of
quality factors approaching 109 [14] in Si3N4 nanome-
chanical resonators at room temperature. However, the
PnC localization approach has an inherent limitation, which
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FIG. 1. (a) Binary tree with six branching levels. Local x
coordinates are shown for the first three levels. One tree defines
half a resonator, and the complete structure is formed by adding
its mirror reflection in the yz plane. Hatched rectangles indicate
clamping points. (b) Two branching points of a binary-tree
resonator with the definitions of the segment widths, w, and
lengths, l. The dashed blue contour is used to derive the
transformation of the mode derivative.

PHYSICAL REVIEW LETTERS 124, 025502 (2020)

0031-9007=20=124(2)=025502(6) 025502-1 © 2020 American Physical Society

https://orcid.org/0000-0003-4606-0546
https://orcid.org/0000-0003-0241-447X
https://orcid.org/0000-0001-8044-4629
https://orcid.org/0000-0002-3408-886X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.025502&domain=pdf&date_stamp=2020-01-16
https://doi.org/10.1103/PhysRevLett.124.025502
https://doi.org/10.1103/PhysRevLett.124.025502
https://doi.org/10.1103/PhysRevLett.124.025502
https://doi.org/10.1103/PhysRevLett.124.025502


makes it disadvantageous in many potential applications—
it applies only to high-order modes of the suspended
structure. In contrast, our self-similar structures can realize
low-order modes with unprecedented quality factors, com-
plementing other known methods of engineering dissipa-
tion dilution [12–16].
Our results are relevant to areas ranging from sensing

[17,18] to cavity quantumoptomechanics [19],which employ
stressed, high-Q nanomechanical resonators [20–22].
Moreover, because of the close relationship between the Q
of the fundamental mode of a clamped tensioned structure
and the Q of a pendulum [8], our results can be used for
designing high-Q suspensions of test masses, akin to those
employed in gravitational wave detectors and experiments
on macroscopic optomechanics [23–25].
This Letter is structured as follows. First we show how

the propagation of a flexural mode across a string branch
point reduces the boundary loss coefficient and present a
theory of binary-tree resonators that incorporate cascaded
branchings. We calculate the Q’s of a sample Si3N4

nanoresonator and predict a fundamental mode Q exceed-
ing 109 assuming experimentally realistic parameters. We
then study the variation of boundary and distributed loss
coefficients with the parameters of the binary trees and
show that the trade-off for a reduction of boundary loss is
an increase in the distributed loss.
Boundary losses.—We start by reviewing the relation

between the boundary loss coefficient, α, and the mode
amplitude gradient. The transverse displacement field uðxÞ
of a flexural string mode in the high-tension limit is found
from the equation

−σðxÞ d
2u

dx2
¼ ω2ρu; ð3Þ

where x is the coordinate along the string, σðxÞ≡ σxxðxÞ is
the static axial stress distribution, ρ is the material density,
and ω is the mode frequency. Equation (3) is valid every-
where except in the regions close to the string clamping
points. Once the standing wave approaches a clamping
point, it enters a transition region over which it reduces its
gradient to zero. In the vicinity of the clamped boundary,
the mode experiences sharp bending with curvature given
by (see the Supplemental Material of Ref. [12], and also
Refs. [8,11])

u00clðxÞ ¼
u0ðþ0Þ
λcll

exp
�
−

x
λcll

�
; ð4Þ

where the clamping point is at x ¼ 0 [such that uð0Þ ¼ 0],
the string extends to x > 0, and u0ðþ0Þ is the derivative of
the solution of Eq. (3) which does not satisfy the boundary
condition u0ð0Þ ¼ 0. The parameter λcl is defined with h
and σ local to the clamp [15]. The total lossy elastic energy
is commonly dominated by the contribution from the

clamps [9,11], and since this contribution is proportional
to the integral of the mode curvature squared, it is decreased
by the reduction of u0ðþ0Þ.
Propagation across a branch point.—An interesting

situation in which suppression of the flexural mode
gradient occurs is when a string mode propagates over a
branch point. In order to show this, we consider a junction
of three beams with rectangular cross section, highlighted
by the blue contour in Fig. 1(b). The dynamic equation
for the two-dimensional profile of out-of-plane vibrations
uðx; yÞ is given by [26]

−
∂
∂xi

�
σij

∂u
∂xj

�
¼ ω2ρu; ð5Þ

which generalizes Eq. (3). We assume summation over the
repeating indices i and j, each of which runs over the two
spatial coordinates, x and y. The components of the stress
tensor σij are functions of x and y. By integrating both sides
of Eq. (5) over the infinitesimally small area of the contour
and transforming the divergence into a boundary integral,
we find that

I
dsi

�
σij

∂u
∂xj

�
¼ 2w2σ2u02 − w1σ1u01 ¼ 0; ð6Þ

where u01 and u02 are the amplitude gradients in the
directions of axes x1 and x2, respectively. We assumed
that the mode branches symmetrically and correspondingly
doubled the contribution of u02. Next, the balance of static
tensile forces requires

w1σ1 ¼ 2w2σ2 cosðθÞ: ð7Þ

Combining Eqs. (6) and (7), we find that

u02 ¼ u01 cosðθÞ: ð8Þ

Equation (8) shows that the mode gradient is reduced by
a factor of cosðθÞ after propagating over a branch point.
Although the reduction in principle can be arbitrarily large
if θ is close to π=2, the improvement in dissipation dilution
provided by a single branch point is fairly limited. The
reason for this is an associated increase in the distributed
lossy energy caused by the torsional deformation of the
beams. Nevertheless, we will show that cascaded branch-
ings can greatly reduce residual lossy energy.
Self-similar binary-tree resonators.—Multiple string

branchings can be cascaded such that their totality forms
a binary tree, as shown in Fig. 1. After each branching, the
lengths of the string segments are reduced by the same ratio
in order to prevent self-overlap. As realistic resonators have
to be hard clamped on all sides, we consider structures
composed of two symmetric binary trees joined at the roots
and clamped at the tips. We treat the case in which all of the
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strings are beams with rectangular cross section and the
same thickness, as this geometry is potentially suitable for
nanofabrication. Our main qualitative results, however, are
not contingent on this assumption. Since we are primarily
interested in the fundamental resonator mode, in the
following, we theoretically consider only the modes that
split symmetrically at each branch point.
Binary-tree resonators are convenient to analyze using

a set of local axes, xn, each directed along one segment,
beginning at one branch point and ending at the next one
as shown in Fig. 1(a). Considering one path from the
resonator center to one of the clamps is sufficient for
describing symmetrically split modes. We index the
branching level by n, starting from n ¼ 0 for the central
segment. The total number of branchings is denoted by N.
The flexural deformation of each segment as a function of
the local coordinate is denoted by unðxnÞ. The segment
lengths, ln, and widths, wn [shown in Fig. 1(b)], are found
using the ratios rl and rw as ln ¼ l0ðrlÞn and
wn ¼ w0ðrwÞn, respectively.
Flexural modes of tree resonators can be found by

matching the solutions unðxnÞ over different segments
using Eq. (8), the continuity condition unðlnÞ ¼ unþ1ð0Þ,
and the boundary conditions uNðlNÞ ¼ 0 and u00ð0Þ ¼ 0 [or
u0ð0Þ ¼ 0]. With unðxnÞ in hand, one can compute the
dissipation dilution factors, and the loss coefficients α and
β. However, we need to introduce one more concept before
we can provide explicit expressions for these quantities.
Torsional lossy energy.—Flexural deformations of a

two-dimensional system of strings in general induce tor-
sional deformation of the segments. If the segments have
high aspect ratios, torsion does not produce geometrically
nonlinear strain in the direction of the string axis [12] and
contributes only to the lossy elastic energy.
The emergence of torsion in a tree segment is illustrated

in the inset of Fig. 2(a). The equilibria of force moments at
the junctions define the boundary conditions for the torsion
angles. At the beginning of the segment, the angle is set by
the previous segment as τn ¼ u0n−1ðln−1Þ sinðθÞ. At the end
of the segment, the angle is zero. The torsional energy
stored by one segment is then given by

hWtorsin ¼
Ewnh3

6ð1þ νÞ
Z

ln

0

dxn½τ0ðxnÞ�2; ð9Þ

where ν is Poisson’s ratio. If the aspect ratio of the segment
is high (which we assume in the following), the transition
from τn to zero happens linearly, and τ0 ¼ τn=ln.
Note that if the full resonator can be modeled as a

patterned 2D membrane, one can use the general formula
of the Supplemental Material of Ref. [11] to find the lossy
energy, including the contribution which we refer to as
“torsional.” Nevertheless, we find it useful to separate the
torsional energy, as this concept is generalizable to strings

with nonrectangular cross sections for which the relation to
membranes is not obvious.
Quality factors and loss coefficients.—The quality fac-

tors of intrinsic loss-limited resonator modes are found by
using Eqs. (1) and (2). The energies involved are calculated
by summing up the contributions from all of the tree
segments. The lossless “tension” energy is given by

hWtensi ¼ 2
XN
n¼0

2nσnwnh
Z

ln

0

dxn½u0nðxnÞ�2: ð10Þ

The lossy energy consists of three contributions
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FIG. 2. (a) FEM simulation of the fundamental mode of a
stress-preserving binary-tree resonator. (Inset) Schematic display
of a cut view of one segment (marked with orange) and
illustration of the torsion created by the previous segment
(marked with green). (b) The displacement of the mode shown
in (a) plotted over the local x coordinates. (c) Quality factors and
frequencies of out-of-plane modes of the resonator shown in (a).
Blue diamonds correspond to the theory presented in this Letter,
red dots to the result of FEM simulation. Filled red circles,
symmetrically branched modes; empty circles, other modes.
Green squares show out-of-plane modes of a doubly clamped
beam resonator with the same ltot.
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hWlossyi ¼ hWbend;bi þ hWbendi þ hWtorsi: ð11Þ

The distributed bending energy is

hWbendi ¼ 2
XN
n¼0

2n
Ewnh3

12

Z
ln

0

dxn½u00nðxnÞ�2; ð12Þ

while the boundary bending is

hWbend;bi ¼ 2NwNh2
ffiffiffiffiffi
E
12

r ffiffiffiffiffiffi
σN

p ½u0NðlN − 0Þ�2; ð13Þ

and the torsional contribution is

hWtorsi ¼ 2
XN
n¼1

2n
Ewnh3

6ð1þ νÞln
½u0n−1ðln−1Þ sinðθÞ�2: ð14Þ

The loss coefficients in Eq. (2) are identified as

α ¼ hWbend;bi
λhWtensi

; ð15Þ

β ¼ hWbendi þ hWtorsi
λ2hWtensi

¼ βbend þ βtors: ð16Þ

Note that α and β are independent of λ, which in our case is
defined as

λ ¼ h
ltot

ffiffiffiffiffiffiffiffiffiffi
E

12σ0

s
; ð17Þ

with ltot being the total resonator size in the direction along
the central segment. Given l0, rl, and θ, one can find ltot
analytically, but the resulting expression is cumbersome.
Stress-preserving trees.—The distribution of static stress

in a binary-tree resonator in general can be such that the
stress is peaked either in the branch tips or in the trunk.
For simplicity, we restrict our numeric analysis to the trees
in which the static stress along the segments is uniform.
As follows from the balance of static forces [Eq. (7)],
the condition σnþ1 ¼ σn is fulfilled (and the resonator is
“stress preserving”) if the width scaling ratio is set to
rw ¼ 1=½2 cosðθÞ�. If a stress-preserving resonator is pat-
terned from a film with isotropic initial prestress, denoted
as σfilm, upon suspension, the static stress in all segments is
given by

σn ¼ σfilmð1 − νÞ: ð18Þ

Simulation results.—The basic acoustic properties of
binary-tree resonators can be understood by giving an
example. In Fig. 2, we present a simulation of a stress-
preserving resonator with five branching levels, rl ¼ 0.67,
l0 ¼ 1 mm (ltot ¼ 3.7 mm), w0 ¼ 100 nm, h ¼ 20 nm,

θ ¼ 80 deg, which is made of high-stress stoichiometric
silicon nitride film (σfilm ¼ 1.14 GPa, E ¼ 250 GPa,
ν ¼ 0.23, ρ ¼ 3100 kg=m3, 1=ϕ ¼ 1.4 × 103 [14]) at room
temperature. The assumed loss angle of the film is much
larger than the loss achievable in bulk material due to
surface losses [27].
The fundamental resonator mode is shown in Figs. 2(a)

and 2(b). The reduction of mode amplitude gradient at
each branch point can be observed from these figures. Note
that the apparent discontinuity of the mode derivative in
Fig. 2(b) is due to the turns of the path following the local
x axes—the two-dimensional mode has no sharp bends at
the branch points.
The calculated quality factors are presented in Fig. 2(c),

which shows that the Q of the fundamental mode is
enhanced by about 2 orders in magnitude compared to a
simple doubly clamped beam of the same size. All low-
frequency flexural modes experience similar Q enhance-
ment, which gradually decreases with an increase in
frequency.
Two methods were used to obtain the data in Fig. 2(c):

the theory presented in this Letter, which relies on the one-
dimensional approximation of segment modes, and a finite-
element method (FEM) simulation of a nonuniform plate
under tension. The frequencies and quality factors found
using different methods agree within a few percent for a
few lower-order modes, whereas higher-order modes show
higher discrepancy due to the onset of hybridization
between bending and torsion (neglected in our theoretical
analysis). The FEM simulation also provides information
about the in-plane and nonsymmetrically branched modes
of the structure. For clarity, we do not show in-plane modes
in Fig. 2(c), as their quality factors are significantly lower
than the out-of-plane modes, while their density is about
the same.
In order to obtain a more general insight, we study the

variation of loss coefficients α and β (which are material
and size independent) of the fundamental resonator mode
with the geometric parameters rl, rw, θ, and N. We keep rw
fixed to satisfy the stress-preservation condition at given θ.
Furthermore, we put rl ¼ rl;critðθÞ, where rl;crit is the value
at which tip-to-tip self-contact occurs in a fractal tree with
infinite N (and there is no self-contact for finite N). We
sweep the remaining free parameters, θ and N, and present
the results in Fig. 3. It can be seen that α is suppressed as θ
increases, while βtors, on the contrary, goes up. Therefore,
the torsional lossy energy eventually becomes the main
limitation for dissipation dilution as the boundary loss is
suppressed. The exact parameters at which the overall
dissipation dilution factor is maximized depend on λ—for
smaller λ, the optimum shifts toward larger θ or N.
Fractal limit.—The data in Fig. 3 help us to understand

some properties of binary-tree resonators in the fractal limit
when N goes to infinity. As N increases, α reduces to zero,
and βbend converges to a finite value. The distributed torsion
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loss coefficient βtors has more complex behavior with
increasing N, it can either converge to a finite value or
increase indefinitely. Which of the two scenarios is realized
depends on the behavior of geometric series in Eq. (14),
which can be shown to converge if cosðθÞ < ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rl=ð2rwÞ
p

.
Correspondingly, the Q of the fundamental mode of a
fractal structure either can be finite and limited by the
distributed energy loss or it can be low and can approach
the undiluted value 1=ϕ.
Potential experimental realization.—High-stress

mechanical resonators with complex shapes, millimeter-
scale length, and thickness down to 20 nm were success-
fully fabricated recently [13,14,28] from silicon nitride
films deposited by low pressure chemical vapor deposition
on silicon. It is likely that our proposed geometries with
the dimensions assumed in Fig. 2 can be fabricated using
the same processes. Our resonators must be operated at
pressure below 10−8 mbar in order to prevent gas damping
of the vibrational modes [29]. The measurement of the
resonator modes with thermal-noise limited displacement
sensitivity should be possible using common optical
interferometric techniques [13,14,28]. The resonators also
can be probed by coupling them with whispering gallery
mode resonators [30,31], photonic crystal cavities [32,33],
and superconducting circuits [34,35].
Conclusions and outlook.—We showed that the boun-

dary contribution to the lossy elastic energy of flexural
modes can be suppressed in a system of tensioned strings
connected to form a self-similar binary tree. This boun-
dary loss suppression does not require the structure to
extend beyond one acoustic wavelength and therefore can
enhance the quality factor of the fundamental resonator
mode, as well as of a multitude of other low-order modes
at the same time. Our results are relevant to the design of
beam and tethered-membrane [18,28] nanomechanical
resonators, as well as the suspensions of macroscopic test
masses [23–25].

The code to reproduce the data in Figs. 2 and 3 is
available on Zenodo [36].
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