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We demonstrate the existence of a fluid-structure instability arising from the interaction of electro-
osmotic flow with an elastic substrate. Considering the case of flow within a soft fluidic chamber, we show
that above a certain electric field threshold, negative gauge pressure induced by electro-osmotic flow causes
the collapse of its elastic walls. We combine experiments and theoretical analysis to elucidate the
underlying mechanism for instability and identify several distinct dynamic regimes. The understanding of
this instability is important for the design of electrokinetic systems containing soft elements.
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Introduction.—Electro-osmotic flow (EOF) arises over
electrically charged surfaces due to interaction of an
externally applied electric field with the net charge in
the electric double layer on a surface. Since its discovery by
Reuss in 1809 [1], EOF has become a common method
to manipulate fluids in microfluidic and lab-on-a-chip
devices [2]. In many microfluidic applications, EOF acts
against hydraulic resistance, resulting in an internal pres-
sure distribution, which can be (gauge) positive or negative
depending on the direction of the flow and the associated
boundary conditions [2]. Since electro-osmotic flow rate
scales as h̃ũEOF, and pressure driven flow rate scales as
p̃h̃3=μ̃l̃, conservation of mass dictates a characteristic
pressure of [3]

p̃ ∼
μ̃ l̃

h̃2
ũEOF; ð1Þ

where ũEOF is the electro-osmotic slip velocity, h̃ is the
height of the channel, l̃ is the characteristic streamwise
length scale, and μ̃ is the fluid viscosity.
Many microfluidic configurations are fabricated from

soft materials such as poly(dimethylsiloxane) (PDMS) [4],
and thus may deform due to fluid flow within the device.
Such deformations were also recently studied in the context
of EOF-driven flows by Mukherjee et al. [5], de Rutte et al.
[6], and Boyko et al. [7]. In all those studies, the fluid-
structure interaction exhibited stable behavior.
In this Letter, we show for the first time that such electro-

osmotic flow systems exhibit fluid-structure instability.
Negative pressures induced by EOF lead to deformation
of the elastic walls, decreasing the fluidic film thickness, h̃.
In accordance with Eq. (1), this results in the pressure
becoming increasingly negative, acting to further reduce
the gap. Using experimental observations and theoretical
predictions, we show the existence of an instability wherein

small changes in the electric field lead to large changes in
the deformation and ultimately the collapse of the elastic
wall. We provide insight into the physical mechanisms
underlying it and demonstrate that above a certain electric
field threshold, the system switches from a stable behavior
to an unstable one, characterized by a metastable bottleneck
period. When the electric field is further increased, the
bottleneck disappears and the system transitions to exhibit
an immediate collapse of the elastic wall.
Experimental.—To observe the dynamics of an elastic

boundary subjected to negative pressure induced by non-
uniform EOF, we designed an experimental system, shown
in Fig. 1. The system consists of a h̃i ¼ 171 μm deep
fluidic chamber with a thin, 40 μm, elastic ceiling made of
polydimethylsiloxane (PDMS). At the far edges of the
30 mm long chamber, there are two reservoirs through
which the driving electric field is applied to the system. The
bottom of the fluidic chamber is a glass slide, half of which
is coated with poly(allylamine hydrochloride) (PAH) [8], a
positively charged polyelectrolyte, changing the glass’s
native negative surface charge to a positive one. The elastic
ceiling is supported everywhere by a rigid acrylic frame,
except for a 15 × 15 mm region whose center is aligned
with the surface charge discontinuity on the glass. On top of
this region, we placed a 0.2 g, 10 × 10 mm rigid acrylic
plate, which stretches the elastic ceiling and reduces the
liquid thickness to h̃0 ¼ 94 μm at rest. We measure the
vertical translation of the acrylic plate in time, h̃ðt̃Þ, by
monitoring the change in the point spread function (PSF) of
fluorescent microbeads deposited on its top surface, as
shown Fig 1(b). To enable measurement over the entire
range of motion of the plate, we modify the PSF using a
cylindrical lens, placed in front of the camera sensor [9].
At each time point, the image of each bead’s PSF is
compared against a pre-established calibration curve yield-
ing its vertical position. We fill the fluidic chamber with
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10 mM histidine, providing simultaneously low conduc-
tivity and high buffering capacity, and apply a set of fixed
voltages between the two reservoirs. The direction of the
electric field is set such that the established EOF velocity
is directed from the center of the chamber outward, thus
inducing a negative pressure within the chamber.
Experimental observations.—Figure 2(a) presents one

dataset of experimental measurements, showing the
height of the plate relative to the bottom glass surface as
a function of time for several applied voltages. Additional
datasets exhibiting identical behavior are provided in the
Supplemental Material [10]. We observe three distinct
regimes for the dynamics of the plate. (i) Below a certain
electric field threshold value (here approximately ẼCR ¼
−2.23 × 104 Vm−1), the plate is pulled downward and
achieves a new steady-state position where the hydro-
dynamic forces are balanced by the restoring force of the
elastic membrane. (ii) For electric fields above this thresh-
old, the plate appears to be reaching a steady state as it
lingers at a nearly fixed height for a significant duration of
time, but finally, without any external interference to the
system, it accelerates down and rapidly collapses onto the
bottom surface. (iii) As the electric field is increased this
metastable “bottleneck time,” in which the plate descent
is slowed down, shortens. For sufficiently high electric
fields it completely disappears and the plate collapses to the
floor immediately after application of the electric field.
Figure 3(a) presents the height of the plate at the end of the
experiment (after 195 s) as a function of the applied electric
field, distinctly indicating the onset of instability. While for
an electric field of ẼCR ¼ −2.23 × 104 Vm−1 the system
reaches a steady state at a moderate deformation, an
increase of only 1.3% in the magnitude of the field results

in an abrupt change in behavior, collapsing the plate
onto the bottom surface. This can also be observed in
the grayed-out region of Fig. 2(a), where we allowed a
longer measurement time in order to capture as accurately
as possible the onset of instability.
Theoretical model.—To provide further insight into the

physical behavior of the system, we formulate a one-
dimensional model describing the temporal evolution of the
film thickness h̃ðt̃Þ. We consider a viscous liquid film
confined between a rigid surface and a rigid body of mass
m̃ and length l̃m, placed on the top of an elastic sheet, which
we model as a linear spring with stiffness k̃, as shown in
Fig. 1(d). The liquid film is connected to two fluidic
reservoirs at a distance L̃ from one another, through which
the electric field is applied. We employ a Cartesian
coordinate system (x̃,z̃), as indicated in Fig. 1(d). As in
our experimental setup, we prescribe a nonuniform electro-
osmotic slip velocity ũEOFðx̃Þ on the bottom rigid surface,
which in the thin double-layer limit, can be described by the
Helmholtz-Smoluchowski equation [14],

ũEOF ¼ − ε̃ζ̃Ẽ
μ̃

; ð2Þ

where ε̃ is the liquid permittivity, ζ̃ðx̃Þ is the zeta potential
distribution on the surface, and Ẽ is the imposed electric
field. While the experimental system is three dimensional,
we still expect to capture the key properties of the system
from a two-dimensional analysis in the x̃ − z̃ plane, since
the EOF-induced pressure gradients are primarily along
the x̃ axis.
Applying the lubrication approximation to the flow field,

we relate the fluidic pressure p̃ to the gap height h̃ðt̃Þ [10],

(d)

(c)

(b)

FIG. 1. Illustration of the configuration used for experiments and modeling. (a) Image of the experimental device, (b) exploded
isometric view showing its different layers, and (d) two-dimensional model and key parameters used for the theoretical analysis. The
device consists of a microfluidic chamber chemically functionalized to produce nonuniform EOF. The chamber’s floor is fixed while its
ceiling can move vertically, supported by an elastic sheet. Upon application of an electric field, flow is driven from the center to the edges
of the chamber, resulting in negative pressure and downward motion of the ceiling. (c) We monitor the height of the ceiling h̃ðt̃Þ in time
by capturing the change in the point spread function (PSF) of beads deposited on top of it, and observe its collapse onto the bottom
surface when instability is triggered.
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dh̃ðt̃Þ
dt̃

− h̃ðt̃Þ3
12μ̃

∂2p̃ðx̃; z̃; t̃Þ
∂x̃2 þ 1

2
h̃ðt̃Þ dũEOFðx̃Þ

dx̃
¼ 0: ð3Þ

Solving Eq. (3) for the pressure p̃ at z̃ ¼ h̃, and then
integrating the result with respect to x̃ from 0 to l̃m while
using the global mass conservation, provides the force
F̃p that the fluidic pressure exerts on the rigid body (see
Ref. [10]),

F̃pðt̃Þ ¼ − μ̃l̃3m
h̃ðt̃Þ3

dh̃ðt̃Þ
dt̃

þ 6μ̃B̃

h̃ðt̃Þ2 þ χρ̃ g̃ l̃m½h̃i − h̃ðt̃Þ�; ð4Þ

where χ ¼ 1þ ½l̃m=ðL̃ − l̃mÞ� and B̃ is defined as

B̃ ¼ − ε̃ Ẽ
μ̃

�Z
l̃m

0

�Z
x̃

0

ζ̃ðξ̃Þdξ̃
�
dx̃ − l̃m

2

Z
l̃m

0

ζ̃ðξ̃Þdξ̃
�
: ð5Þ

The first term on the right-hand side of Eq. (4) represents
the viscous resistance, the second term represents the
electro-osmotic force which can be either attractive or
repulsive depending on the sign of B̃, and the last term
represents the restoring effect of the hydrostatic pressure.
In addition to the pressure induced by the nonuniform

electro-osmotic flow, a dielectric force arising from the
Maxwell stresses also acts on the plate. Since the permit-
tivity of the PDMS and air are negligible compared to that
of the water, we may neglect their contributions to the
Maxwell stress and express the (upward directed) dielectric
force F̃d as [15]

F̃d ¼
1

2
ε̃Ẽ2l̃m: ð6Þ

Neglecting the plate’s inertia, the force balance on the
rigid plate, accounting for the fluidic, dielectric, and the
elastic forces, yields a governing equation for the gap
h̃ðt̃Þ [10]

− μ̃l̃3m
h̃ðt̃Þ3

dh̃ðt̃Þ
dt̃

þ 6μ̃B̃

h̃ðt̃Þ2 þ
1

2
ε̃Ẽ2l̃m þ k̃g½h̃0 − h̃ðt̃Þ� ¼ 0; ð7Þ

where k̃g ¼ k̃þ χρ̃ g̃ l̃m is the generalized spring stiffness
consisting of contributions of elasticity and gravity, and
h̃0 ¼ h̃i − ðm̃ g̃ =k̃gÞ is the liquid film thickness when the
plate is at rest.
Equation (7) resembles nonlinear evolution equations

encountered in a range of instability problems such as
electrostatic MEMS actuators [16], and elastocapillarity
coalescence [17]. Here the different terms in Eq. (7)
represent the coupling between viscous resistance, the
electro-osmotic and dielectric forces, and the restoring
effects of the elasticity and gravity. As we show in the
Supplemental Material [10], the case of constant current
results in yet another variant of the equation, with different
scaling for the actuation force (h̃−3).
We introduce the nondimensional variables x ¼ x̃=l̃m,

h ¼ h̃=h̃0, and t ¼ t̃=t̃�, where t̃� ¼ μ̃l̃3m=k̃gh̃
3
0 is the vis-

cous-elastic timescale obtained by balancing the first and
the fourth terms in Eq. (7). With this nondimensionaliza-
tion, the governing Eq. (7) reads

1

h3
dh
dt

¼ 4

27

β

h2
þ 4

27
φβ2 þ 1 − h; ð8Þ

subject to the initial condition hðt ¼ 0Þ ¼ 1. Here β ¼
81B̃=ð2k̃gh̃30=μ̃Þ represents the ratio of electro-osmotic to
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FIG. 2. Time evolution of the fluidic gap resulting from
nonuniform electro-osmotic flow. (a) The experimentally ob-
served temporal evolution of the film thickness h̃ðt̃Þ for various
values of Ẽ and (b) the corresponding theoretically predicted
evolution of hðtÞ for various values of β, indicating three distinct
dynamic behaviors. Below the threshold values of ẼCR ¼
−2.23 × 104 Vm−1 or βCR ¼ −1.129, the ceiling approaches a
stable steady-state height. Setting Ẽ or β to slightly above their
threshold values (Ẽ ¼ −2.26 × 104 Vm−1 and β ¼ −1.145)
triggers instability characterized by a bottleneck period. For
higher values of Ẽ or β (e.g., for Ẽ ¼ −5 × 104 Vm−1 or
β ¼ −2.53) the bottleneck phase disappears and the ceiling
immediately collapses onto the rigid floor. Error bars in (a) in-
dicate a 95% confidence of the mean position of nine beads
measured at each time point. The grayed-out region highlights
two experiments in which the driving field differs by only 1.3%,
capturing the threshold of instability and leading to a longer
bottleneck due to the proximity to this value.
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elastic forces, and φ ¼ k̃gh̃
5
0=ð486λ2ε̃ζ̃2l̃3mÞ is a strictly

positive parameter, wherein λ ¼ B̃=ðε̃ ζ̃ Ẽ l̃2m=μ̃Þ. We note
that while β changes by manipulation of the applied electric
field, the parameters φ and λ remain constant for a given
configuration.
To understand the physical mechanisms underlying the

instability, we perform a linear stability analysis of Eq. (8).
We consider a small perturbation of the rigid body from its
equilibrium height hss, by setting hðtÞ ¼ hssð1þ ϵ0eσtÞ,
where ϵ0 ≪ 1 is some small perturbation and σ is the
nondimensional growth rate. We obtain that the growth rate
σ is [10]

σ ¼ − 8

27
β − h3ss; ð9Þ

indicating that positive values of β, corresponding to
positive (upward) deformation always result in a stable
system, whereas negative values of β may destabilize it.
Equating σ [Eq. (9)] to zero, and using the implicit
equilibrium solution for hss as a function of β and φ,
ð4=27Þβ=h2ss þ ð4=27Þφβ2 þ 1 − hss ¼ 0, we find that the
critical steady-state height hssCR and the corresponding
threshold value βCR, are determined from the equations
βCR ¼ −½1þ ð4=27Þφβ2CR�3 and hssCR ¼ 2=3½1þ
ð4=27Þφβ2CR�. Using physical and geometrical parameters
from our experimental setup [10], we estimate φ ¼ 0.219
and obtain that hssCR ¼ 0.694 and βCR ¼ −1.129. Using
the experimentally measured values for ζ̃, h̃0, k̃g, and μ̃, the
latter corresponds to an electric field of ẼCR;Theory ¼
−52927 V/m, which is on the same order of magnitude
as the experimentally observed ẼCR;Exp ¼ −22300 V/m.
Despite the theoretical analysis being purely one dimen-
sional in space, it provides a reasonable prediction for the
threshold electric field.
Figure 3(b) presents the steady-state height hss as a

function of β, for φ ¼ 0.219. The dashed red line represents
the steady-state solutions of Eq. (8). For β > βCR ¼
−1.129, there are two real steady-state solutions, one of
which is linearly stable and the other is linearly unstable. At
βCR ¼ −1.129, these two solutions coincide and disappear
at a saddle-node (fold) bifurcation with hssCR ¼ 0.694.
Black dots represent the results of a numerical simulation
showing the collapse dynamics, consistent with the results
of linear stability analysis.
To explain the experimentally observed temporal evo-

lution of the film thickness showing strong dependence on
the applied electric field [see Fig. 2(a)], we solve numeri-
cally the nonlinear evolution equation (8) for fixed values
of β. It is convenient to discuss a normalized electric field
difference δ defined as

δ ¼ Ẽ − ẼCR

ẼCR
¼ β − βCR

βCR
; ð10Þ

so that β ¼ βCRð1þ δÞ and Ẽ ¼ ẼCRð1þ δÞ, and the
instability occurs for δ > 0.
Figure 2(b) presents the time evolution of the gap hðtÞ

for different values of β, with φ ¼ 0.219. Our theoretical
analysis identifies the three distinct dynamic behaviors
observed in the experiments, with βCR (δ ¼ 0) serving as
the threshold parameter. The analysis shows that a bottle-
neck behavior is obtained only for very small values of β
above this threshold, i.e., 0 < δ ≪ 1. Furthermore, our
analysis explains the significant slow down of the plate as it
approaches the surface: the viscous resistance increases as
h−3, while the electro-osmotic attraction increases as h−2,
leading to an exponential decay. Figure 2 also indicates
a strong dependence of the total collapse duration on δ.
In the Supplemental Material [10] we seek to quantify
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FIG. 3. Theoretical and experimental observation of a threshold
electric field for instability. (a) The experimentally observed
height h̃ at the end of each experiment, as a function of applied
electric field Ẽ. Error bars indicate a 95% confidence on the mean
based on four experiments [10]. (b) The theoretically predicted
steady-state height h as a function of β. The red dashed line
represents the results of a linear stability analysis, whereas black
dots represent the results of the dynamic simulation. At βCR ¼
−1.129 the stable equilibrium intersects an unstable solution and
disappears at a saddle-node bifurcation [10]. Above the threshold
values of ẼCR ¼ −2.23 × 104 Vm−1 and βCR ¼ −1.129, no
equilibrium solutions exist and the system exhibits instability
that collapses the ceiling onto the floor. Gray lines in both
subfigures were added to guide the eye.
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this total collapse time, which we express as a combination
of the bottleneck time and the exponential decay time.
Figure S7(a) [10] compares the experimental and theoreti-
cally predicted collapse duration, with good agreement
over 2 orders of magnitude in δ.
Expanding our theoretical analysis to values of β and φ

beyond those of our experimental setup, we present in
Fig. 4 a stability diagram for different values of β and φ,
showing three distinct regions. For sufficiently small jβj
values, the dielectric forces are negligible and the system
reaches a negative stable deformation (light gray region),
characterized by a balance between the electro-osmotic
pulldown and the elastic restoring force. For small values of
φ and sufficiently negative values of β (white region), the
EOF-driven instability emerges and triggers the collapse of
the plate. While our experiments could be mapped to these
two regions, Fig. 4 reveals an additional region which our
setup cannot cover. For large values of φ and sufficiently
negative values of β (dark gray region), the upward directed
dielectric force overcomes the EOF-induced negative
pressure, resulting in a positive stable deformation. The
interfaces between the regions are defined by two curves:
β ¼ −½1þ ð4=27Þφβ2�3 (red curve) indicates the transition
from a stable to the unstable downward motion of the plate
and is obtained from linear stability analysis. φβ ¼ −1
(black curve) indicates the transition from a downward to
the upward motion, obtained by requiring h ¼ 1 in Eq. (8)
[10]. As Fig. 4 (inset) indicates, decreasing the value of β at
a given φ results in the system passing through multiple
regions. We stress that, for any value of φ, there exists a
sufficiently large electric field for which the dielectric force
will always dominate over the electro-osmotic force,
leading to the upward movement of the plate.

Summary and conclusions.—EOF systems are typically
considered to be symmetric; i.e., inversion of the electric
field also inverts the direction of the flow. The coupling
with elasticity breaks this symmetry, as is the case in other
problems involving flow and elasticity, such as micro-
swimmers or flows in the alveoli. This asymmetry is
greatly enhanced by the instability we presented here, and
the system can be considered as a deformation-based
diode; for an electric field acting in a direction creating
positive pressure, flow will be allowed through the
channel. However, for an electric field acting in the
opposite direction, the instability will be triggered, and
the collapse of the channel walls will stop the flow.
Interestingly, due to the competition between EOF-
induced pressure and dielectrophoretic forces, our theory
predicts that the direction of deformation can also be
inverted not only by inverting the direction of the field, but
also by modifying its magnitude, where for a sufficiently
large field the instability is avoided and a positive
deformation is obtained. Within the possible experimental
parameters of our experiment, we could not however
obtain sufficiently high electric fields to observe this, but
also note that at such fields additional phenomena such as
Joule heating may affect the dynamics, and those were not
taken into account in our analysis.
One could consider expansion of this study to multiple

chambers, in parallel or in series, which interact with one
another through both the fluid flow and the electric current
distribution. Such a configuration would exhibit spatio-
temporal propagation of the flow and electric fields, and
of the resulting instability. One limit of such a distributed
system would be an elastic substrate that can deform
arbitrarily, where the interplay between EOF-induced
pressures and elastic deformation may lead to additional
rich physics such as moving contact points involving triple
phase contact lines.
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